Package org.apache.mahout.clustering.classify

Examples of org.apache.mahout.clustering.classify.ClusterClassifier.classify()


  }
 
  @Test
  public void testClusterClassification() {
    ClusterClassifier classifier = newKlusterClassifier();
    Vector pdf = classifier.classify(new DenseVector(2));
    assertEquals("[0,0]", "[0.2,0.6,0.2]", AbstractCluster.formatVector(pdf, null));
    pdf = classifier.classify(new DenseVector(2).assign(2));
    assertEquals("[2,2]", "[0.493,0.296,0.211]", AbstractCluster.formatVector(pdf, null));
  }
 
View Full Code Here


  @Test
  public void testClusterClassification() {
    ClusterClassifier classifier = newKlusterClassifier();
    Vector pdf = classifier.classify(new DenseVector(2));
    assertEquals("[0,0]", "[0.2,0.6,0.2]", AbstractCluster.formatVector(pdf, null));
    pdf = classifier.classify(new DenseVector(2).assign(2));
    assertEquals("[2,2]", "[0.493,0.296,0.211]", AbstractCluster.formatVector(pdf, null));
  }
 
  @Test
  public void testSoftClusterClassification() {
View Full Code Here

  }
 
  @Test
  public void testSoftClusterClassification() {
    ClusterClassifier classifier = newSoftClusterClassifier();
    Vector pdf = classifier.classify(new DenseVector(2));
    assertEquals("[0,0]", "[0.0,1.0,0.0]", AbstractCluster.formatVector(pdf, null));
    pdf = classifier.classify(new DenseVector(2).assign(2));
    assertEquals("[2,2]", "[0.735,0.184,0.082]", AbstractCluster.formatVector(pdf, null));
  }
 
View Full Code Here

  @Test
  public void testSoftClusterClassification() {
    ClusterClassifier classifier = newSoftClusterClassifier();
    Vector pdf = classifier.classify(new DenseVector(2));
    assertEquals("[0,0]", "[0.0,1.0,0.0]", AbstractCluster.formatVector(pdf, null));
    pdf = classifier.classify(new DenseVector(2).assign(2));
    assertEquals("[2,2]", "[0.735,0.184,0.082]", AbstractCluster.formatVector(pdf, null));
  }
 
  @Test
  public void testDMClassifierSerialization() throws Exception {
View Full Code Here

  }
 
  @Test
  public void testCosineKlusterClassification() {
    ClusterClassifier classifier = newCosineKlusterClassifier();
    Vector pdf = classifier.classify(new DenseVector(2));
    assertEquals("[0,0]", "[0.333,0.333,0.333]", AbstractCluster.formatVector(pdf, null));
    pdf = classifier.classify(new DenseVector(2).assign(2));
    assertEquals("[2,2]", "[0.429,0.429,0.143]", AbstractCluster.formatVector(pdf, null));
  }
}
View Full Code Here

  @Test
  public void testCosineKlusterClassification() {
    ClusterClassifier classifier = newCosineKlusterClassifier();
    Vector pdf = classifier.classify(new DenseVector(2));
    assertEquals("[0,0]", "[0.333,0.333,0.333]", AbstractCluster.formatVector(pdf, null));
    pdf = classifier.classify(new DenseVector(2).assign(2));
    assertEquals("[2,2]", "[0.429,0.429,0.143]", AbstractCluster.formatVector(pdf, null));
  }
}
View Full Code Here

    while (iteration <= numIterations) {
      for (VectorWritable vw : new SequenceFileDirValueIterable<VectorWritable>(inPath, PathType.LIST,
          PathFilters.logsCRCFilter(), conf)) {
        Vector vector = vw.get();
        // classification yields probabilities
        Vector probabilities = classifier.classify(vector);
        // policy selects weights for models given those probabilities
        Vector weights = classifier.getPolicy().select(probabilities);
        // training causes all models to observe data
        for (Vector.Element e : weights.nonZeroes()) {
          int index = e.index();
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.