Package org.apache.mahout.clustering.classify

Examples of org.apache.mahout.clustering.classify.ClusterClassifier.classify()


  @Test
  public void testClusterClassification() {
    ClusterClassifier classifier = newKlusterClassifier();
    Vector pdf = classifier.classify(new DenseVector(2));
    assertEquals("[0,0]", "[0.200, 0.600, 0.200]", AbstractCluster.formatVector(pdf, null));
    pdf = classifier.classify(new DenseVector(2).assign(2));
    assertEquals("[2,2]", "[0.493, 0.296, 0.211]", AbstractCluster.formatVector(pdf, null));
  }
 
  @Test(expected = UnsupportedOperationException.class)
  public void testMSCanopyClassification() {
View Full Code Here


    DistanceMeasure measure = new ManhattanDistanceMeasure();
    models.add(new MeanShiftCanopy(new DenseVector(2).assign(1), 0, measure));
    models.add(new MeanShiftCanopy(new DenseVector(2), 1, measure));
    models.add(new MeanShiftCanopy(new DenseVector(2).assign(-1), 2, measure));
    ClusterClassifier classifier = new ClusterClassifier(models, new MeanShiftClusteringPolicy());
    classifier.classify(new DenseVector(2));
  }
 
  @Test
  public void testSoftClusterClassification() {
    ClusterClassifier classifier = newSoftClusterClassifier();
View Full Code Here

  }
 
  @Test
  public void testSoftClusterClassification() {
    ClusterClassifier classifier = newSoftClusterClassifier();
    Vector pdf = classifier.classify(new DenseVector(2));
    assertEquals("[0,0]", "[0.000, 1.000, 0.000]", AbstractCluster.formatVector(pdf, null));
    pdf = classifier.classify(new DenseVector(2).assign(2));
    assertEquals("[2,2]", "[0.735, 0.184, 0.082]", AbstractCluster.formatVector(pdf, null));
  }
 
View Full Code Here

  @Test
  public void testSoftClusterClassification() {
    ClusterClassifier classifier = newSoftClusterClassifier();
    Vector pdf = classifier.classify(new DenseVector(2));
    assertEquals("[0,0]", "[0.000, 1.000, 0.000]", AbstractCluster.formatVector(pdf, null));
    pdf = classifier.classify(new DenseVector(2).assign(2));
    assertEquals("[2,2]", "[0.735, 0.184, 0.082]", AbstractCluster.formatVector(pdf, null));
  }
 
  @Test
  public void testGaussianClusterClassification() {
View Full Code Here

  }
 
  @Test
  public void testGaussianClusterClassification() {
    ClusterClassifier classifier = newGaussianClassifier();
    Vector pdf = classifier.classify(new DenseVector(2));
    assertEquals("[0,0]", "[0.212, 0.576, 0.212]", AbstractCluster.formatVector(pdf, null));
    pdf = classifier.classify(new DenseVector(2).assign(2));
    assertEquals("[2,2]", "[0.952, 0.047, 0.000]", AbstractCluster.formatVector(pdf, null));
  }
 
View Full Code Here

  @Test
  public void testGaussianClusterClassification() {
    ClusterClassifier classifier = newGaussianClassifier();
    Vector pdf = classifier.classify(new DenseVector(2));
    assertEquals("[0,0]", "[0.212, 0.576, 0.212]", AbstractCluster.formatVector(pdf, null));
    pdf = classifier.classify(new DenseVector(2).assign(2));
    assertEquals("[2,2]", "[0.952, 0.047, 0.000]", AbstractCluster.formatVector(pdf, null));
  }
 
  @Test
  public void testDMClassifierSerialization() throws Exception {
View Full Code Here

  }
 
  @Test
  public void testCosineKlusterClassification() {
    ClusterClassifier classifier = newCosineKlusterClassifier();
    Vector pdf = classifier.classify(new DenseVector(2));
    assertEquals("[0,0]", "[0.333, 0.333, 0.333]", AbstractCluster.formatVector(pdf, null));
    pdf = classifier.classify(new DenseVector(2).assign(2));
    assertEquals("[2,2]", "[0.545, 0.273, 0.182]", AbstractCluster.formatVector(pdf, null));
  }
}
View Full Code Here

  @Test
  public void testCosineKlusterClassification() {
    ClusterClassifier classifier = newCosineKlusterClassifier();
    Vector pdf = classifier.classify(new DenseVector(2));
    assertEquals("[0,0]", "[0.333, 0.333, 0.333]", AbstractCluster.formatVector(pdf, null));
    pdf = classifier.classify(new DenseVector(2).assign(2));
    assertEquals("[2,2]", "[0.545, 0.273, 0.182]", AbstractCluster.formatVector(pdf, null));
  }
}
View Full Code Here

  }
 
  @Test
  public void testDMClusterClassification() {
    ClusterClassifier classifier = newDMClassifier();
    Vector pdf = classifier.classify(new DenseVector(2));
    assertEquals("[0,0]", "[0.2,0.6,0.2]", AbstractCluster.formatVector(pdf, null));
    pdf = classifier.classify(new DenseVector(2).assign(2));
    assertEquals("[2,2]", "[0.493,0.296,0.211]", AbstractCluster.formatVector(pdf, null));
  }
 
View Full Code Here

  @Test
  public void testDMClusterClassification() {
    ClusterClassifier classifier = newDMClassifier();
    Vector pdf = classifier.classify(new DenseVector(2));
    assertEquals("[0,0]", "[0.2,0.6,0.2]", AbstractCluster.formatVector(pdf, null));
    pdf = classifier.classify(new DenseVector(2).assign(2));
    assertEquals("[2,2]", "[0.493,0.296,0.211]", AbstractCluster.formatVector(pdf, null));
  }
 
  @Test
  public void testClusterClassification() {
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.