Package org.apache.commons.math3.distribution

Examples of org.apache.commons.math3.distribution.BinomialDistribution.cumulativeProbability()


        double lowerBinMass = 0;
        double upperBinMass = 0;
        while (!widthSufficient) {
            binWidth++;
            lowerBinMass = poissonDistribution.cumulativeProbability(lower - 1, lower + binWidth - 1);
            upperBinMass = poissonDistribution.cumulativeProbability(upper - binWidth - 1, upper - 1);
            widthSufficient = FastMath.min(lowerBinMass, upperBinMass) * sampleSize >= minExpectedCount;
        }

        /*
         *  Determine interior bin bounds.  Bins are
View Full Code Here


        // Bottom bin
        observed[0] = 0;
        for (int i = 0; i < lower; i++) {
            observed[0] += frequency.getCount(i);
        }
        expected[0] = poissonDistribution.cumulativeProbability(lower - 1) * sampleSize;

        // Top bin
        observed[binCount - 1] = 0;
        for (int i = upper; i <= maxObservedValue; i++) {
            observed[binCount - 1] += frequency.getCount(i);
View Full Code Here

        // Top bin
        observed[binCount - 1] = 0;
        for (int i = upper; i <= maxObservedValue; i++) {
            observed[binCount - 1] += frequency.getCount(i);
        }
        expected[binCount - 1] = (1 - poissonDistribution.cumulativeProbability(upper - 1)) * sampleSize;

        // Interior bins
        for (int i = 1; i < binCount - 1; i++) {
            observed[i] = 0;
            for (int j = binBounds.get(i - 1); j < binBounds.get(i); j++) {
View Full Code Here

        for (int i = 1; i < binCount - 1; i++) {
            observed[i] = 0;
            for (int j = binBounds.get(i - 1); j < binBounds.get(i); j++) {
                observed[i] += frequency.getCount(j);
            } // Expected count is (mass in [binBounds[i-1], binBounds[i])) * sampleSize
            expected[i] = (poissonDistribution.cumulativeProbability(binBounds.get(i) - 1) -
                poissonDistribution.cumulativeProbability(binBounds.get(i - 1) -1)) * sampleSize;
        }

        // Use chisquare test to verify that generated values are poisson(mean)-distributed
        ChiSquareTest chiSquareTest = new ChiSquareTest();
View Full Code Here

            observed[i] = 0;
            for (int j = binBounds.get(i - 1); j < binBounds.get(i); j++) {
                observed[i] += frequency.getCount(j);
            } // Expected count is (mass in [binBounds[i-1], binBounds[i])) * sampleSize
            expected[i] = (poissonDistribution.cumulativeProbability(binBounds.get(i) - 1) -
                poissonDistribution.cumulativeProbability(binBounds.get(i - 1) -1)) * sampleSize;
        }

        // Use chisquare test to verify that generated values are poisson(mean)-distributed
        ChiSquareTest chiSquareTest = new ChiSquareTest();
            // Fail if we can reject null hypothesis that distributions are the same
View Full Code Here

        final double[] binBounds = getUpperBounds();
        final double kB = kB(binIndex);
        final double lower = binIndex == 0 ? min : binBounds[binIndex - 1];
        final RealDistribution kernel = k(x);
        final double withinBinCum =
            (kernel.cumulativeProbability(x) -  kernel.cumulativeProbability(lower)) / kB;
        return pBminus + pB * withinBinCum;
    }

    /**
     * {@inheritDoc}
 
View Full Code Here

        final double[] binBounds = getUpperBounds();
        final double kB = kB(binIndex);
        final double lower = binIndex == 0 ? min : binBounds[binIndex - 1];
        final RealDistribution kernel = k(x);
        final double withinBinCum =
            (kernel.cumulativeProbability(x) -  kernel.cumulativeProbability(lower)) / kB;
        return pBminus + pB * withinBinCum;
    }

    /**
     * {@inheritDoc}
 
View Full Code Here

        final RealDistribution kernel = getKernel(binStats.get(i));
        final double kB = kB(i);
        final double[] binBounds = getUpperBounds();
        final double lower = i == 0 ? min : binBounds[i - 1];
        final double kBminus = kernel.cumulativeProbability(lower);
        final double pB = pB(i);
        final double pBminus = pBminus(i);
        final double pCrit = p - pBminus;
        if (pCrit <= 0) {
            return lower;
View Full Code Here

     */
    @SuppressWarnings("deprecation")
    private double kB(int i) {
        final double[] binBounds = getUpperBounds();
        final RealDistribution kernel = getKernel(binStats.get(i));
        return i == 0 ? kernel.cumulativeProbability(min, binBounds[0]) :
            kernel.cumulativeProbability(binBounds[i - 1], binBounds[i]);
    }

    /**
     * The within-bin kernel of the bin that x belongs to.
View Full Code Here

    @SuppressWarnings("deprecation")
    private double kB(int i) {
        final double[] binBounds = getUpperBounds();
        final RealDistribution kernel = getKernel(binStats.get(i));
        return i == 0 ? kernel.cumulativeProbability(min, binBounds[0]) :
            kernel.cumulativeProbability(binBounds[i - 1], binBounds[i]);
    }

    /**
     * The within-bin kernel of the bin that x belongs to.
     *
 
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.