Package org.apache.commons.math3.distribution

Examples of org.apache.commons.math3.distribution.BinomialDistribution.cumulativeProbability()


        System.out.println(bn.cumulativeProbability(32));
        System.out.println(n.cumulativeProbability(32));
        System.out.println(normal.density(p, param_norm));

        p.array[0] = 27;
        System.out.println(bn.cumulativeProbability(27));
        System.out.println(n.cumulativeProbability(27));
        System.out.println(n.density(27));
        System.out.println(normal.density(p, param_norm));

        p.array[0] = 60;
View Full Code Here


        System.out.println(n.cumulativeProbability(27));
        System.out.println(n.density(27));
        System.out.println(normal.density(p, param_norm));

        p.array[0] = 60;
        System.out.println(bn.cumulativeProbability(60));
        System.out.println(n.cumulativeProbability(60));
        System.out.println(n.density(60));
        System.out.println(normal.density(p, param_norm));

View Full Code Here

            }

            final BinomialDistribution distribution = new BinomialDistribution(numberOfTrials, probability);
            switch (alternativeHypothesis) {
                case GREATER_THAN:
                    return 1 - distribution.cumulativeProbability(numberOfSuccesses - 1);
                case LESS_THAN:
                    return distribution.cumulativeProbability(numberOfSuccesses);
                case TWO_SIDED:
                    int criticalValueLow = 0;
                    int criticalValueHigh = numberOfTrials;
View Full Code Here

            final BinomialDistribution distribution = new BinomialDistribution(numberOfTrials, probability);
            switch (alternativeHypothesis) {
                case GREATER_THAN:
                    return 1 - distribution.cumulativeProbability(numberOfSuccesses - 1);
                case LESS_THAN:
                    return distribution.cumulativeProbability(numberOfSuccesses);
                case TWO_SIDED:
                    int criticalValueLow = 0;
                    int criticalValueHigh = numberOfTrials;
                    double pTotal = 0;
View Full Code Here

            }

            final BinomialDistribution distribution = new BinomialDistribution(numberOfTrials, probability);
            switch (alternativeHypothesis) {
                case GREATER_THAN:
                    return 1 - distribution.cumulativeProbability(numberOfSuccesses - 1);
                case LESS_THAN:
                    return distribution.cumulativeProbability(numberOfSuccesses);
                case TWO_SIDED:
                    int criticalValueLow = 0;
                    int criticalValueHigh = numberOfTrials;
View Full Code Here

            final BinomialDistribution distribution = new BinomialDistribution(numberOfTrials, probability);
            switch (alternativeHypothesis) {
                case GREATER_THAN:
                    return 1 - distribution.cumulativeProbability(numberOfSuccesses - 1);
                case LESS_THAN:
                    return distribution.cumulativeProbability(numberOfSuccesses);
                case TWO_SIDED:
                    int criticalValueLow = 0;
                    int criticalValueHigh = numberOfTrials;
                    double pTotal = 0;
View Full Code Here

      int totalNew = testCount + newTrainInGen;

      IntegerDistribution dist = new BinomialDistribution(random, totalNew, TEST_FRACTION);
      double probability;
      if (testCount < dist.getNumericalMean()) {
        probability = dist.cumulativeProbability(testCount);
      } else {
        probability = 1.0 - dist.cumulativeProbability(testCount);
      }
      log.info("Probability of observing {} as {} sample of {}: {}",
               testCount, TEST_FRACTION, totalNew, probability);
View Full Code Here

      IntegerDistribution dist = new BinomialDistribution(random, totalNew, TEST_FRACTION);
      double probability;
      if (testCount < dist.getNumericalMean()) {
        probability = dist.cumulativeProbability(testCount);
      } else {
        probability = 1.0 - dist.cumulativeProbability(testCount);
      }
      log.info("Probability of observing {} as {} sample of {}: {}",
               testCount, TEST_FRACTION, totalNew, probability);
      assertTrue(probability >= 0.001);
    }
View Full Code Here

            }

            final BinomialDistribution distribution = new BinomialDistribution(numberOfTrials, probability);
            switch (alternativeHypothesis) {
                case GREATER_THAN:
                    return 1 - distribution.cumulativeProbability(numberOfSuccesses - 1);
                case LESS_THAN:
                    return distribution.cumulativeProbability(numberOfSuccesses);
                case TWO_SIDED:
                    int criticalValueLow = 0;
                    int criticalValueHigh = numberOfTrials;
View Full Code Here

            final BinomialDistribution distribution = new BinomialDistribution(numberOfTrials, probability);
            switch (alternativeHypothesis) {
                case GREATER_THAN:
                    return 1 - distribution.cumulativeProbability(numberOfSuccesses - 1);
                case LESS_THAN:
                    return distribution.cumulativeProbability(numberOfSuccesses);
                case TWO_SIDED:
                    int criticalValueLow = 0;
                    int criticalValueHigh = numberOfTrials;
                    double pTotal = 0;
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.