Package weka.core

Examples of weka.core.Instances.randomize()


          // Instantiate the Remove filter
          Remove removeIDFilter = new Remove();
          removeIDFilter.setAttributeIndices("first");
     
      // Randomize the data
      data.randomize(random);
   
      // Perform cross-validation
        Instances predictedData = null;
        Evaluation eval = new Evaluation(data);
       
View Full Code Here


    // Instantiate the Remove filter
        Remove removeIDFilter = new Remove();
      removeIDFilter.setAttributeIndices("first");
       
    // Randomize the data
    test.randomize(random);
   
    // Apply log filter
//      Filter logFilter = new LogFilter();
//      logFilter.setInputFormat(train);
//      train = Filter.useFilter(train, logFilter);       
View Full Code Here

        // Instantiate the Remove filter
        Remove removeIDFilter = new Remove();
      removeIDFilter.setAttributeIndices("first");
       
    // Randomize the data
    data.randomize(random);
 
    // Perform cross-validation
      Instances predictedData = null;
      Evaluation eval = new Evaluation(data);
     
View Full Code Here

    double minC=0, maxC=0;

    /** Resampling  **/
    if(Double.parseDouble(m_resamplePercent.getText())<100) {
        inst = new Instances(m_data, 0, m_data.numInstances());
        inst.randomize( new Random(Integer.parseInt(m_rseed.getText())) );
       
        //System.err.println("gettingPercent: " +
        //                   Math.round(
        //                     Double.parseDouble(m_resamplePercent.getText())
        //                     / 100D * m_data.numInstances()
 
View Full Code Here

    Instances newData = new Instances(data);
    m_BaseFormat = new Instances(data, 0);
    newData.deleteWithMissingClass();
   
    Random random = new Random(m_Seed);
    newData.randomize(random);
    if (newData.classAttribute().isNominal()) {
      newData.stratify(m_NumFolds);
    }

    // Create meta level
View Full Code Here

    switch (mode) {
    case EVAL_TUNED_SPLIT:
      Instances trainData = null, evalData = null;
      Instances data = new Instances(instances);
      Random random = new Random(m_Seed);
      data.randomize(random);
      data.stratify(numFolds);
     
      // Make sure that both subsets contain at least one positive instance
      for (int subsetIndex = 0; subsetIndex < numFolds; subsetIndex++) {
        trainData = data.trainCV(numFolds, subsetIndex, random);
View Full Code Here

      final Instances dataSet = new Instances(e.getDataSet());
      m_foldThread = new Thread() {
    public void run() {
      try {
        Random random = new Random(getSeed());
        dataSet.randomize(random);
        if (dataSet.classIndex() >= 0 &&
      dataSet.attribute(dataSet.classIndex()).isNominal()) {
    dataSet.stratify(getFolds());
    if (m_logger != null) {
      m_logger.logMessage("CrossValidationFoldMaker : "
View Full Code Here

    }
    m_InitOptions = ((OptionHandler)m_Classifier).getOptions();
    m_BestPerformance = -99;
    m_NumAttributes = trainData.numAttributes();
    Random random = new Random(m_Seed);
    trainData.randomize(random);
    m_TrainFoldSize = trainData.trainCV(m_NumFolds, 0).numInstances();

    // Check whether there are any parameters to optimize
    if (m_CVParams.size() == 0) {
       m_Classifier.buildClassifier(trainData);
View Full Code Here

        Vector segmentList = new Vector(q + 1);

        //Set random seed
        Random random = new Random(m_Seed);

        data.randomize(random);

        //create index arrays for different segments

        int currentDataIndex = 0;
View Full Code Here

                                }
                            }
                        }
                    }

                    TP.randomize(random);

                    if( getTrainSize() > TP.numInstances() ){
                        throw new Exception("The training set size of " + getTrainSize() + ", is greater than the training pool "
                        + TP.numInstances() );
                    }
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.