}
m_InitOptions = ((OptionHandler)m_Classifier).getOptions();
m_BestPerformance = -99;
m_NumAttributes = trainData.numAttributes();
Random random = new Random(m_Seed);
trainData.randomize(random);
m_TrainFoldSize = trainData.trainCV(m_NumFolds, 0).numInstances();
// Check whether there are any parameters to optimize
if (m_CVParams.size() == 0) {
m_Classifier.buildClassifier(trainData);