Package weka.core

Examples of weka.core.Instances.classAttribute()


                  (m_outputInfoRetrievalStats)) {
                results += "\n" + m_eval.toClassDetailsString();
              }

              if (inst.classIndex() >= 0 &&
                  inst.classAttribute().isNominal()) {
                results += "\n" + m_eval.toMatrixString();
              }
        textTitle = Messages.getInstance().getString("IncrementalClassifierEvaluator_AcceptClassifier_TextTitle_Text") + textTitle;
        TextEvent te =
    new TextEvent(this,
View Full Code Here


       m_Classifier.buildClassifier(trainData);
       m_BestClassifierOptions = m_InitOptions;
       return;
    }

    if (trainData.classAttribute().isNominal()) {
      trainData.stratify(m_NumFolds);
    }
    m_BestClassifierOptions = null;
   
    // Set up m_ClassifierOptions -- take getOptions() and remove
View Full Code Here

    data = Filter.useFilter(instances, m_Filter);
 
    if(data == null)
      throw new Exception(" Unable to randomize the class orders.");
   
    m_Class = data.classAttribute()
    m_Ruleset = new FastVector();
    m_RulesetStats = new FastVector();
    m_Distributions = new FastVector();

    // Sort by classes frequency
View Full Code Here

      source = new DataSource(test);
    testRaw = source.getStructure(test.classIndex());
   
    // If class is set then do class based evaluation as well
    if (hasClass) {
      if (testRaw.classAttribute().isNumeric())
  throw new Exception("ClusterEvaluation: Class must be nominal!");

      filter = new Remove();
      ((Remove) filter).setAttributeIndices("" + (testRaw.classIndex() + 1));
      ((Remove) filter).setInvertSelection(false);
View Full Code Here

    data.deleteWithMissingClass();
   
    if(data.numInstances() < m_Folds)
      throw new Exception("Not enough data for REP.");

    m_ClassAttribute = data.classAttribute();
    if(m_ClassAttribute.isNominal())
      m_NumClasses = m_ClassAttribute.numValues();
    else
      m_NumClasses = 1;
 
View Full Code Here

    m_BaseFormat = new Instances(data, 0);
    newData.deleteWithMissingClass();

    Random random = new Random(m_Seed);
    newData.randomize(random);
    if (newData.classAttribute().isNominal()) {
      newData.stratify(m_NumFolds);
    }

    // Create meta level
    generateMetaLevel(newData, random);
View Full Code Here

      FastVector newClassVals = new FastVector(numNonEmptyClasses);
      int[] oldIndexToNewIndex = new int[newTrain.numClasses()];
      for (int i = 0; i < newTrain.numClasses(); i++) {
        if (notEmptyClass[i]) {
          oldIndexToNewIndex[i] = newClassVals.size();
          newClassVals.addElement(newTrain.classAttribute().value(i));
        }
      }
     
      // Compute new header information
      Attribute newClass = new Attribute(newTrain.classAttribute().name(),
View Full Code Here

          newClassVals.addElement(newTrain.classAttribute().value(i));
        }
      }
     
      // Compute new header information
      Attribute newClass = new Attribute(newTrain.classAttribute().name(),
                                         newClassVals);
      FastVector newAttributes = new FastVector(newTrain.numAttributes());
      for (int i = 0; i < newTrain.numAttributes(); i++) {
        if (i != newTrain.classIndex()) {
          newAttributes.addElement(newTrain.attribute(i).copy());
View Full Code Here

        TargetMetaInfo targetData = m_miningSchema.getTargetMetaData();
        if (m_miningSchema.getFieldsAsInstances().classAttribute().isNumeric()) {
          preds[0] = targetData.getDefaultValue();
        } else {
          Instances miningSchemaI = m_miningSchema.getFieldsAsInstances();
          for (int i = 0; i < miningSchemaI.classAttribute().numValues(); i++) {
            preds[i] = targetData.getPriorProbability(miningSchemaI.classAttribute().value(i));
          }
        }
        return preds;
      }
View Full Code Here

        if (m_miningSchema.getFieldsAsInstances().classAttribute().isNumeric()) {
          preds[0] = targetData.getDefaultValue();
        } else {
          Instances miningSchemaI = m_miningSchema.getFieldsAsInstances();
          for (int i = 0; i < miningSchemaI.classAttribute().numValues(); i++) {
            preds[i] = targetData.getPriorProbability(miningSchemaI.classAttribute().value(i));
          }
        }
        return preds;
      }
    } else {
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.