Trainer<?> t = TrainerFactory.backPropagationAutoencoder(nn, trainInputProvider, testInputProvider, new MultipleNeuronsOutputError(), new NNRandomInitializer(new MersenneTwisterRandomInitializer(-0.01f, 0.01f)), 0.01f, 0.5f, 0f, 0f, 0f);
t.addEventListener(new LogTrainingListener(Thread.currentThread().getStackTrace()[1].getMethodName(), false, true));
Environment.getInstance().setExecutionMode(EXECUTION_MODE.CPU);
t.train();
nn.removeLayer(nn.getOutputLayer());
t.test();
assertEquals(0, t.getOutputError().getTotalNetworkError(), 0.1);
}