Examples of recommend()


Examples of org.apache.mahout.cf.taste.recommender.Recommender.recommend()

   * <a href="http://sourceforge.net/tracker/index.php?func=detail&amp;aid=1396128&amp;group_id=138771&amp;atid=741665">
   * 1396128</a>.
   */
  public void testBestRating() throws Exception {
    Recommender recommender = buildRecommender();
    List<RecommendedItem> recommended = recommender.recommend(1, 1);
    assertNotNull(recommended);
    assertEquals(1, recommended.size());
    RecommendedItem firstRecommended = recommended.get(0);
    // item one should be recommended because it has a greater rating/score
    assertEquals(2, firstRecommended.getItemID());
View Full Code Here

Examples of org.apache.mahout.cf.taste.recommender.Recommender.recommend()

public final class ItemAverageRecommenderTest extends TasteTestCase {

  public void testRecommender() throws Exception {
    Recommender recommender = new ItemAverageRecommender(getDataModel());
    List<RecommendedItem> recommended = recommender.recommend(1, 1);
    assertNotNull(recommended);
    assertEquals(1, recommended.size());
    RecommendedItem firstRecommended = recommended.get(0);
    assertEquals(2, firstRecommended.getItemID());
    assertEquals(0.53333336f, firstRecommended.getValue());
View Full Code Here

Examples of org.apache.mahout.cf.taste.recommender.Recommender.recommend()

                    {0.4, 0.9},
            });
    UserSimilarity similarity = new PearsonCorrelationSimilarity(dataModel);
    ClusterSimilarity clusterSimilarity = new FarthestNeighborClusterSimilarity(similarity);
    Recommender recommender = new TreeClusteringRecommender(dataModel, clusterSimilarity, 2);
    List<RecommendedItem> recommended = recommender.recommend(1, 1);
    assertNotNull(recommended);
    assertEquals(0, recommended.size());
    recommender.refresh(null);
    assertNotNull(recommended);
    assertEquals(0, recommended.size());
View Full Code Here

Examples of org.apache.mahout.cf.taste.recommender.Recommender.recommend()

            });

    UserSimilarity similarity = new PearsonCorrelationSimilarity(dataModel);
    ClusterSimilarity clusterSimilarity = new FarthestNeighborClusterSimilarity(similarity);
    Recommender recommender = new TreeClusteringRecommender(dataModel, clusterSimilarity, 2);
    List<RecommendedItem> fewRecommended = recommender.recommend(1, 2);
    List<RecommendedItem> moreRecommended = recommender.recommend(1, 4);
    for (int i = 0; i < fewRecommended.size(); i++) {
      assertEquals(fewRecommended.get(i).getItemID(), moreRecommended.get(i).getItemID());
    }
    recommender.refresh(null);
View Full Code Here

Examples of org.apache.mahout.cf.taste.recommender.Recommender.recommend()

    UserSimilarity similarity = new PearsonCorrelationSimilarity(dataModel);
    ClusterSimilarity clusterSimilarity = new FarthestNeighborClusterSimilarity(similarity);
    Recommender recommender = new TreeClusteringRecommender(dataModel, clusterSimilarity, 2);
    List<RecommendedItem> fewRecommended = recommender.recommend(1, 2);
    List<RecommendedItem> moreRecommended = recommender.recommend(1, 4);
    for (int i = 0; i < fewRecommended.size(); i++) {
      assertEquals(fewRecommended.get(i).getItemID(), moreRecommended.get(i).getItemID());
    }
    recommender.refresh(null);
    for (int i = 0; i < fewRecommended.size(); i++) {
View Full Code Here

Examples of org.grouplens.lenskit.ItemRecommender.recommend()

            if (irec == null) {
                return Optional.absent();
            }
            LongSet candidates = key.candidates.select(LenskitTestUser.this);
            LongSet excludes = key.exclude.select(LenskitTestUser.this);
            return Optional.of(irec.recommend(getUserId(), key.listSize, candidates, excludes));
        }
    }
}
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.