Examples of randomize()


Examples of org.encog.mathutil.randomize.Distort.randomize()

  private void optionPerturb(RandomizeNetworkDialog dialog) {
    double percent = dialog.getPerturbPercent().getValue();

    Distort distort = new Distort(percent);
    distort.randomize((BasicNetwork) this.method);
    setDirty(true);
  }

  private void optionGaussian(RandomizeNetworkDialog dialog) {
    double mean = dialog.getMean().getValue();
View Full Code Here

Examples of org.encog.mathutil.randomize.GaussianRandomizer.randomize()

  private void optionGaussian(RandomizeNetworkDialog dialog) {
    double mean = dialog.getMean().getValue();
    double dev = dialog.getDeviation().getValue();

    GaussianRandomizer g = new GaussianRandomizer(mean, dev);
    g.randomize((BasicNetwork) this.method);
    setDirty(true);
  }

  private void optionRandomize(RandomizeNetworkDialog dialog) {
    Randomizer r = null;
View Full Code Here

Examples of org.encog.mathutil.randomize.Randomizer.randomize()

          double weight = this.network.getWeight(fromLayer,
              fromNeuron, toNeuron);

          if (randomize) {
            weight = d.randomize(weight);
          }

          newWeights[weightsIndex++] = weight;
        }
      }
View Full Code Here

Examples of org.encog.mathutil.randomize.Randomizer.randomize()

  public static FlatNetwork createNetwork() {
    BasicNetwork network = EncogUtility
        .simpleFeedForward(2, 4, 0, 1, false);
    Randomizer randomizer = new ConsistentRandomizer(-1, 1);
    randomizer.randomize(network);
    return network.getStructure().getFlat().clone();
  }

  public static void main(String[] args) {
   
View Full Code Here

Examples of org.encog.mathutil.randomize.Randomizer.randomize()

          .getHigh().getValue(), false);
      break;
    }

    if (r != null) {
      r.randomize((BasicNetwork) this.method);
      setDirty(true);
    }
  }

  private void performQuery() {
View Full Code Here

Examples of org.encog.ml.prg.extension.ProgramExtensionTemplate.randomize()

      }
    }

    // now actually create the node
    final ProgramNode result = new ProgramNode(program, temp, children);
    temp.randomize(rnd, types, result, getMinConst(), getMaxConst());
    return result;
  }

  /**
   * Create a terminal node.
View Full Code Here

Examples of org.encog.neural.flat.FlatNetwork.randomize()

  }

  public static long BenchmarkEncogFlat(double[][] input, double[][] output) {
    FlatNetwork network = new FlatNetwork(input[0].length, HIDDEN_COUNT, 0,
        output[0].length, false);
    network.randomize();
    BasicMLDataSet trainingSet = new BasicMLDataSet(input, output);

    TrainFlatNetworkBackPropagation train = new TrainFlatNetworkBackPropagation(
        network, trainingSet, 0.7, 0.7);
View Full Code Here

Examples of org.encog.neural.flat.FlatNetwork.randomize()

  public static double XOR_IDEAL[][] = { { 0.0 }, { 1.0 }, { 1.0 }, { 0.0 } };

  public static void main(final String args[]) {
   
    FlatNetwork network = new FlatNetwork(2,4,0,1,false);
    network.randomize();
   
    MLDataSet trainingSet = new BasicMLDataSet(XOR_INPUT, XOR_IDEAL);
   
   
    TrainFlatNetworkResilient train = new TrainFlatNetworkResilient(network,trainingSet);
View Full Code Here

Examples of org.encog.neural.flat.FlatNetwork.randomize()

  public static final int AVG_COUNT = 20;

  public static long benchmarkEncogFlat(double[][] input, double[][] output) {
    FlatNetwork network = new FlatNetwork(input[0].length, HIDDEN_COUNT, 0,
        output[0].length, false);
    network.randomize();
    BasicMLDataSet trainingSet = new BasicMLDataSet(input, output);

    TrainFlatNetworkBackPropagation train = new TrainFlatNetworkBackPropagation(
        network, trainingSet, 0.7, 0.7);
View Full Code Here

Examples of org.encog.neural.flat.FlatNetwork.randomize()

  public static final int AVG_COUNT = 20;

  public static long benchmarkEncogFlat(double[][] input, double[][] output) {
    FlatNetwork network = new FlatNetwork(input[0].length, HIDDEN_COUNT, 0,
        output[0].length, false);
    network.randomize();
    BasicMLDataSet trainingSet = new BasicMLDataSet(input, output);

    TrainFlatNetworkBackPropagation train = new TrainFlatNetworkBackPropagation(
        network, trainingSet, 0.7, 0.7);
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.