Package org.apache.mahout.matrix

Examples of org.apache.mahout.matrix.Vector.assign()


    for (Model<Vector>[] models : result) {
      g2.setStroke(new BasicStroke(i == 0 ? 3 : 1));
      g2.setColor(colors[Math.min(colors.length - 1, i--)]);
      for (Model<Vector> m : models) {
        AsymmetricSampledNormalModel mm = (AsymmetricSampledNormalModel) m;
        dv.assign(mm.getStdDev().times(3));
        if (isSignificant(mm))
          plotEllipse(g2, mm.getMean(), dv);
      }
    }
  }
View Full Code Here


    for (Model<Vector>[] models : result) {
      g2.setStroke(new BasicStroke(i == 0 ? 3 : 1));
      g2.setColor(colors[Math.min(colors.length - 1, i--)]);
      for (Model<Vector> m : models) {
        NormalModel mm = (NormalModel) m;
        dv.assign(mm.getStdDev() * 3);
        if (isSignificant(mm))
          plotEllipse(g2, mm.getMean(), dv);
      }
    }
  }
View Full Code Here

    for (Model<Vector>[] models : result) {
      g2.setStroke(new BasicStroke(i == 0 ? 3 : 1));
      g2.setColor(colors[Math.min(colors.length - 1, i--)]);
      for (Model<Vector> m : models) {
        NormalModel mm = (NormalModel) m;
        dv.assign(mm.getStdDev() * 3);
        if (isSignificant(mm))
          plotEllipse(g2, mm.getMean(), dv);
      }
    }
  }
View Full Code Here

    plotRectangle(g2, new DenseVector(2).assign(2), dv);
    plotRectangle(g2, new DenseVector(2).assign(-2), dv);

    // plot the sample data
    g2.setColor(Color.DARK_GRAY);
    dv.assign(0.03);
    for (Vector v : sampleData)
      plotRectangle(g2, v, dv);
  }

  /**
 
View Full Code Here

    double docTotal = wordCounts.zSum();
    int docLength = wordCounts.size();

    // initialize variational approximation to p(z|doc)
    Vector gamma = new DenseVector(state.numTopics);
    gamma.assign(state.topicSmoothing + docTotal / state.numTopics);
    Vector nextGamma = new DenseVector(state.numTopics);

    DenseMatrix phi = new DenseMatrix(state.numTopics, docLength);

    // digamma is expensive, precompute
View Full Code Here

  }


  private static Vector digamma(Vector v) {
    Vector digammaGamma = new DenseVector(v.size());
    digammaGamma.assign(v, new BinaryFunction() {
      @Override
      public double apply(double unused, double g) {
        return digamma(g);
      }
    });
View Full Code Here

      if (max < p) {
        max = p;
      }
    }
    // normalize the probabilities by largest observed value
    pi.assign(new TimesFunction(), 1.0 / max);
    return pi;
  }

}
View Full Code Here

   * @return a Vector which is the new bound centroid
   */
  public Vector computeBoundCentroid() {
    Vector result = new DenseVector(getCenter().size());
    for (Vector v : boundPoints) {
      result.assign(v, new PlusFunction());
    }
    return result.divide(boundPoints.size());
  }

  /**
 
View Full Code Here

      if (max < p) {
        max = p;
      }
    }
    // normalize the probabilities by largest observed value
    pi.assign(new TimesFunction(), 1.0 / max);
    return pi;
  }
}
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.