Package org.apache.commons.math3.distribution

Examples of org.apache.commons.math3.distribution.NormalDistribution.cumulativeProbability()


            assertEquals(q, uG2, (1 - q) * q * 10e-2);

            double u1 = normalDistribution.cumulativeProbability(td1.quantile(q));
            assertEquals(q, u1, (1 - q) * q * 10e-2);

            double u2 = normalDistribution.cumulativeProbability(td2.quantile(q) / 2);
            assertEquals(q, u2, (1 - q) * q * 10e-2);

            double u3 = tDistribution.cumulativeProbability(td3.quantile(q));
            assertEquals(q, u3, (1 - q) * q * 10e-2);
        }
View Full Code Here


        final NormalDistribution normal = new NormalDistribution();
        List<Double> scores = Ordering.natural().sortedCopy(Iterables.transform(k1.elementSet(),
                new Function<String, Double>() {
                    public Double apply(String s) {
                        return normal.cumulativeProbability(LogLikelihood.rootLogLikelihoodRatio(k1.count(s), 50000 - k1.count(s), k2.count(s), 50000 - k2.count(s)));
                    }
                }));
        int n = scores.size();
//        System.out.printf("%.5f, %.5f, %.5f, %.5f, %.5f, %.5f, %.5f", scores.get(0), scores.get((int) (0.05*n)), scores.get(n / 4), scores.get(n / 2), scores.get(3 * n / 4), scores.get((int) (0.95 * n)), scores.get(n - 1));
        int i = 0;
View Full Code Here

        .roundToInt(envSize / binSize, RoundingMode.UP);
    final ImmutableSortedSet.Builder<Double> b = ImmutableSortedSet
        .naturalOrder();
    b.add(0d);
    for (int i = 1; i < numBins; i++) {
      b.add(nd.cumulativeProbability(i * binSize));
    }
    b.add(1d);
    probabilities = b.build();
    probabilitiesList = probabilities.asList();
  }
View Full Code Here

         *  Start with upper and lower tail bins.
         *  Lower bin = [0, lower); Upper bin = [upper, +inf).
         */
        PoissonDistribution poissonDistribution = new PoissonDistribution(mean);
        int lower = 1;
        while (poissonDistribution.cumulativeProbability(lower - 1) * sampleSize < minExpectedCount) {
            lower++;
        }
        int upper = (int) (5 * mean)// Even for mean = 1, not much mass beyond 5
        while ((1 - poissonDistribution.cumulativeProbability(upper - 1)) * sampleSize < minExpectedCount) {
            upper--;
View Full Code Here

        int lower = 1;
        while (poissonDistribution.cumulativeProbability(lower - 1) * sampleSize < minExpectedCount) {
            lower++;
        }
        int upper = (int) (5 * mean)// Even for mean = 1, not much mass beyond 5
        while ((1 - poissonDistribution.cumulativeProbability(upper - 1)) * sampleSize < minExpectedCount) {
            upper--;
        }

        // Set bin width for interior bins.  For poisson, only need to look at end bins.
        int binWidth = 0;
View Full Code Here

        boolean widthSufficient = false;
        double lowerBinMass = 0;
        double upperBinMass = 0;
        while (!widthSufficient) {
            binWidth++;
            lowerBinMass = poissonDistribution.cumulativeProbability(lower - 1, lower + binWidth - 1);
            upperBinMass = poissonDistribution.cumulativeProbability(upper - binWidth - 1, upper - 1);
            widthSufficient = FastMath.min(lowerBinMass, upperBinMass) * sampleSize >= minExpectedCount;
        }

        /*
 
View Full Code Here

        double lowerBinMass = 0;
        double upperBinMass = 0;
        while (!widthSufficient) {
            binWidth++;
            lowerBinMass = poissonDistribution.cumulativeProbability(lower - 1, lower + binWidth - 1);
            upperBinMass = poissonDistribution.cumulativeProbability(upper - binWidth - 1, upper - 1);
            widthSufficient = FastMath.min(lowerBinMass, upperBinMass) * sampleSize >= minExpectedCount;
        }

        /*
         *  Determine interior bin bounds.  Bins are
View Full Code Here

        // Bottom bin
        observed[0] = 0;
        for (int i = 0; i < lower; i++) {
            observed[0] += frequency.getCount(i);
        }
        expected[0] = poissonDistribution.cumulativeProbability(lower - 1) * sampleSize;

        // Top bin
        observed[binCount - 1] = 0;
        for (int i = upper; i <= maxObservedValue; i++) {
            observed[binCount - 1] += frequency.getCount(i);
View Full Code Here

        // Top bin
        observed[binCount - 1] = 0;
        for (int i = upper; i <= maxObservedValue; i++) {
            observed[binCount - 1] += frequency.getCount(i);
        }
        expected[binCount - 1] = (1 - poissonDistribution.cumulativeProbability(upper - 1)) * sampleSize;

        // Interior bins
        for (int i = 1; i < binCount - 1; i++) {
            observed[i] = 0;
            for (int j = binBounds.get(i - 1); j < binBounds.get(i); j++) {
View Full Code Here

        for (int i = 1; i < binCount - 1; i++) {
            observed[i] = 0;
            for (int j = binBounds.get(i - 1); j < binBounds.get(i); j++) {
                observed[i] += frequency.getCount(j);
            } // Expected count is (mass in [binBounds[i-1], binBounds[i])) * sampleSize
            expected[i] = (poissonDistribution.cumulativeProbability(binBounds.get(i) - 1) -
                poissonDistribution.cumulativeProbability(binBounds.get(i - 1) -1)) * sampleSize;
        }

        // Use chisquare test to verify that generated values are poisson(mean)-distributed
        ChiSquareTest chiSquareTest = new ChiSquareTest();
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.