Examples of buildVerticesToMergeForPaths()


Examples of statechum.analysis.learning.MarkovClassifier.buildVerticesToMergeForPaths()

        //if (inconsistencyForTheReferenceGraph != 53)
        //  break;// ignore automata where we get good results.
         
        MarkovClassifier ptaClassifier = new MarkovClassifier(m,pta);
        final List<List<Label>> pathsToMerge=ptaClassifier.identifyPathsToMerge(checker);
        final Collection<Set<CmpVertex>> verticesToMergeBasedOnInitialPTA=ptaClassifier.buildVerticesToMergeForPaths(pathsToMerge);

        /*
        List<StatePair> pairsListInitialMerge = ptaClassifier.buildVerticesToMergeForPath(pathsToMerge);
        LinkedList<AMEquivalenceClass<CmpVertex,LearnerGraphCachedData>> verticesToMergeInitialMerge = new LinkedList<AMEquivalenceClass<CmpVertex,LearnerGraphCachedData>>();
        int scoreInitialMerge = pta.pairscores.computePairCompatibilityScore_general(null, pairsListInitialMerge, verticesToMergeInitialMerge);
View Full Code Here

Examples of statechum.analysis.learning.MarkovClassifier.buildVerticesToMergeForPaths()

    m.updateMarkov(merged,predictForwardOrSideways,false);// now we construct sideways learner ...
    m.constructMarkovTentative(graph,predictForwardOrSideways);// ... and use it to add more transitions.
    */
    MarkovModel inverseModel = new MarkovModel(ptaClassifier.model.getChunkLen(),true,!ptaClassifier.model.directionForwardOrInverse);
    MarkovClassifier cl = new MarkovClassifier(inverseModel,ptaClassifier.graph);cl.updateMarkov(false);
    Collection<Set<CmpVertex>> verticesToMergeUsingSideways=cl.buildVerticesToMergeForPaths(pathsOfInterest);
    return verticesToMergeUsingSideways;
  }
 
  public static LearnerGraph checkIfSingleStateLoopsCanBeFormed(MarkovClassifier ptaClassifier,LearnerGraph referenceGraph,final Collection<List<Label>> pathsOfInterest)
  {
View Full Code Here

Examples of statechum.analysis.learning.MarkovClassifier.buildVerticesToMergeForPaths()

    m.updateMarkov(merged,predictForwardOrSideways,false);// now we construct sideways learner ...
    m.constructMarkovTentative(graph,predictForwardOrSideways);// ... and use it to add more transitions.
    */
    MarkovModel inverseModel = new MarkovModel(ptaClassifier.model.getChunkLen(),true,!ptaClassifier.model.directionForwardOrInverse);
    MarkovClassifier cl = new MarkovClassifier(inverseModel,ptaClassifier.graph);cl.updateMarkov(false);
    Collection<Set<CmpVertex>> verticesToMergeUsingSideways=cl.buildVerticesToMergeForPaths(pathsOfInterest);
    return verticesToMergeUsingSideways;
  }
 
  public static LearnerGraph checkIfSingleStateLoopsCanBeFormed(MarkovClassifier ptaClassifier,LearnerGraph referenceGraph,final Collection<List<Label>> pathsOfInterest)
  {
View Full Code Here

Examples of statechum.analysis.learning.MarkovClassifier.buildVerticesToMergeForPaths()

        //if (inconsistencyForTheReferenceGraph != 53)
        //  break;// ignore automata where we get good results.
         
        MarkovClassifier ptaClassifier = new MarkovClassifier(m,pta);
        final List<List<Label>> pathsToMerge=ptaClassifier.identifyPathsToMerge(checker);
        final Collection<Set<CmpVertex>> verticesToMergeBasedOnInitialPTA=ptaClassifier.buildVerticesToMergeForPaths(pathsToMerge);

        /*
        List<StatePair> pairsListInitialMerge = ptaClassifier.buildVerticesToMergeForPath(pathsToMerge);
        LinkedList<AMEquivalenceClass<CmpVertex,LearnerGraphCachedData>> verticesToMergeInitialMerge = new LinkedList<AMEquivalenceClass<CmpVertex,LearnerGraphCachedData>>();
        int scoreInitialMerge = pta.pairscores.computePairCompatibilityScore_general(null, pairsListInitialMerge, verticesToMergeInitialMerge);
View Full Code Here

Examples of statechum.analysis.learning.MarkovClassifier.buildVerticesToMergeForPaths()

      {
        final MarkovClassifier ptaClassifier = new MarkovClassifier(m,pta);
        final List<List<Label>> pathsToMerge=ptaClassifier.identifyPathsToMerge(checker);
        // These vertices are merged first and then the learning start from the root as normal.
        // The reason to learn from the root is a memory cost. if we learn from the middle, we can get a better results
        verticesToMergeBasedOnInitialPTA=ptaClassifier.buildVerticesToMergeForPaths(pathsToMerge);
       
        List<StatePair> pairsListInitialMerge = ptaClassifier.buildVerticesToMergeForPath(pathsToMerge);
        LinkedList<AMEquivalenceClass<CmpVertex,LearnerGraphCachedData>> verticesToMergeInitialMerge = new LinkedList<AMEquivalenceClass<CmpVertex,LearnerGraphCachedData>>();
        int scoreInitialMerge = pta.pairscores.computePairCompatibilityScore_general(null, pairsListInitialMerge, verticesToMergeInitialMerge);
        assert scoreInitialMerge >= 0;
View Full Code Here

Examples of statechum.analysis.learning.MarkovClassifier.buildVerticesToMergeForPaths()

        {
          final MarkovClassifier ptaClassifier = new MarkovClassifier(m,pta);
          final List<List<Label>> pathsToMerge=ptaClassifier.identifyPathsToMerge(checker);
          // These vertices are merged first and then the learning start from the root as normal.
          // The reason to learn from the root is a memory cost. if we learn from the middle, we can get a better results
          verticesToMergeBasedOnInitialPTA=ptaClassifier.buildVerticesToMergeForPaths(pathsToMerge);
         
          List<StatePair> pairsListInitialMerge = ptaClassifier.buildVerticesToMergeForPath(pathsToMerge);
          LinkedList<AMEquivalenceClass<CmpVertex,LearnerGraphCachedData>> verticesToMergeInitialMerge = new LinkedList<AMEquivalenceClass<CmpVertex,LearnerGraphCachedData>>();
          int scoreInitialMerge = pta.pairscores.computePairCompatibilityScore_general(null, pairsListInitialMerge, verticesToMergeInitialMerge);
          assert scoreInitialMerge >= 0;
View Full Code Here

Examples of statechum.analysis.learning.MarkovClassifier.buildVerticesToMergeForPaths()

        //if (inconsistencyForTheReferenceGraph != 53)
        //  break;// ignore automata where we get good results.
         
        MarkovClassifier ptaClassifier = new MarkovClassifier(m,pta);
        final List<List<Label>> pathsToMerge=ptaClassifier.identifyPathsToMerge(checker);
        final Collection<Set<CmpVertex>> verticesToMergeBasedOnInitialPTA=ptaClassifier.buildVerticesToMergeForPaths(pathsToMerge);

        List<StatePair> pairsListInitialMerge = ptaClassifier.buildVerticesToMergeForPath(pathsToMerge);
        LinkedList<AMEquivalenceClass<CmpVertex,LearnerGraphCachedData>> verticesToMergeInitialMerge = new LinkedList<AMEquivalenceClass<CmpVertex,LearnerGraphCachedData>>();
        int scoreInitialMerge = pta.pairscores.computePairCompatibilityScore_general(null, pairsListInitialMerge, verticesToMergeInitialMerge);
        assert scoreInitialMerge >= 0;
View Full Code Here

Examples of statechum.analysis.learning.MarkovClassifier.buildVerticesToMergeForPaths()

    m.updateMarkov(merged,predictForwardOrSideways,false);// now we construct sideways learner ...
    m.constructMarkovTentative(graph,predictForwardOrSideways);// ... and use it to add more transitions.
    */
    MarkovModel inverseModel = new MarkovModel(ptaClassifier.model.getChunkLen(),true,!ptaClassifier.model.directionForwardOrInverse);
    MarkovClassifier cl = new MarkovClassifier(inverseModel,ptaClassifier.graph);cl.updateMarkov(false);
    Collection<Set<CmpVertex>> verticesToMergeUsingSideways=cl.buildVerticesToMergeForPaths(pathsOfInterest);
    return verticesToMergeUsingSideways;
  }
 
  public static LearnerGraph checkIfSingleStateLoopsCanBeFormed(MarkovClassifier ptaClassifier,LearnerGraph referenceGraph,final Collection<List<Label>> pathsOfInterest)
  {
View Full Code Here

Examples of statechum.analysis.learning.MarkovClassifier.buildVerticesToMergeForPaths()

        {
          final MarkovClassifier ptaClassifier = new MarkovClassifier(m,pta);
          final List<List<Label>> pathsToMerge=ptaClassifier.identifyPathsToMerge(checker);
          // These vertices are merged first and then the learning start from the root as normal.
          // The reason to learn from the root is a memory cost. if we learn from the middle, we can get a better results
          verticesToMergeBasedOnInitialPTA=ptaClassifier.buildVerticesToMergeForPaths(pathsToMerge);
         
          List<StatePair> pairsListInitialMerge = ptaClassifier.buildVerticesToMergeForPath(pathsToMerge);
          LinkedList<AMEquivalenceClass<CmpVertex,LearnerGraphCachedData>> verticesToMergeInitialMerge = new LinkedList<AMEquivalenceClass<CmpVertex,LearnerGraphCachedData>>();
          int scoreInitialMerge = pta.pairscores.computePairCompatibilityScore_general(null, pairsListInitialMerge, verticesToMergeInitialMerge);
          assert scoreInitialMerge >= 0;
View Full Code Here

Examples of statechum.analysis.learning.MarkovClassifier.buildVerticesToMergeForPaths()

                              {
                                Collection<Set<CmpVertex>> verticesToMergeBasedOnInitialPTA=null;
                                final List<List<Label>> pathsToMerge=ptaClassifier.identifyPathsToMerge(checker);
                                // These vertices are merged first and then the learning start from the root as normal.
                                // The reason to learn from the root is a memory cost. if we learn from the middle, we can get a better results
                                verticesToMergeBasedOnInitialPTA=ptaClassifier.buildVerticesToMergeForPaths(pathsToMerge);
                               
                                List<StatePair> pairsListInitialMerge = ptaClassifier.buildVerticesToMergeForPath(pathsToMerge);
                                LinkedList<AMEquivalenceClass<CmpVertex,LearnerGraphCachedData>> verticesToMergeInitialMerge = new LinkedList<AMEquivalenceClass<CmpVertex,LearnerGraphCachedData>>();
                                int scoreInitialMerge = ptaInitial.pairscores.computePairCompatibilityScore_general(null, pairsListInitialMerge, verticesToMergeInitialMerge);
                                assert scoreInitialMerge >= 0;
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.