// will officially be declared as implementing MultivariateDifferentiableOptimizer
MultivariateDifferentiableOptimizer underlying =
new MultivariateDifferentiableOptimizer() {
private final NonLinearConjugateGradientOptimizer cg =
new NonLinearConjugateGradientOptimizer(ConjugateGradientFormula.POLAK_RIBIERE,
new SimpleValueChecker(1.0e-10, 1.0e-10));
public PointValuePair optimize(int maxEval,
MultivariateDifferentiableFunction f,
GoalType goalType,
double[] startPoint) {
return cg.optimize(maxEval, f, goalType, startPoint);
}
public int getMaxEvaluations() {
return cg.getMaxEvaluations();
}
public int getEvaluations() {
return cg.getEvaluations();
}
public ConvergenceChecker<PointValuePair> getConvergenceChecker() {
return cg.getConvergenceChecker();
}
};
JDKRandomGenerator g = new JDKRandomGenerator();
g.setSeed(753289573253l);
RandomVectorGenerator generator =