Examples of NominalToBinary


Examples of weka.filters.supervised.attribute.NominalToBinary

     * by a pseudo-class variable that is used by LogitBoost.
     */
    protected Instances getNumericData(Instances train) throws Exception{
 
  Instances filteredData = new Instances(train)
  m_nominalToBinary = new NominalToBinary();     
  m_nominalToBinary.setInputFormat(filteredData);
  filteredData = Filter.useFilter(filteredData, m_nominalToBinary)

  return super.getNumericData(filteredData);
    }
View Full Code Here

Examples of weka.filters.supervised.attribute.NominalToBinary

    m_replaceMissing = new ReplaceMissingValues();
    m_replaceMissing.setInputFormat(m_instances);
    m_instances = Filter.useFilter(m_instances, m_replaceMissing);

    m_nominalToBinary = new NominalToBinary();
    m_nominalToBinary.setInputFormat(m_instances);
    m_instances = Filter.useFilter(m_instances, m_nominalToBinary);

    m_removeUseless = new RemoveUseless();
    m_removeUseless.setInputFormat(m_instances);
View Full Code Here

Examples of weka.filters.supervised.attribute.NominalToBinary

      data.deleteWithMissingClass();
    }

    // Preprocess instances
    if (!m_checksTurnedOff) {
      m_TransformFilter = new NominalToBinary();
      m_TransformFilter.setInputFormat(data);
      data = Filter.useFilter(data, m_TransformFilter);
      m_MissingFilter = new ReplaceMissingValues();
      m_MissingFilter.setInputFormat(data);
      data = Filter.useFilter(data, m_MissingFilter);
View Full Code Here

Examples of weka.filters.supervised.attribute.NominalToBinary

   * by a pseudo-class variable that is used by LogitBoost.
   */
  protected Instances getNumericData(Instances train) throws Exception{
 
    Instances filteredData = new Instances(train)
    m_nominalToBinary = new NominalToBinary();     
    m_nominalToBinary.setInputFormat(filteredData);
    filteredData = Filter.useFilter(filteredData, m_nominalToBinary)

    return super.getNumericData(filteredData);
  }
View Full Code Here

Examples of weka.filters.supervised.attribute.NominalToBinary

      data.deleteWithMissingClass();
    }

    // Preprocess instances
    if (!m_checksTurnedOff) {
      m_TransformFilter = new NominalToBinary();
      m_TransformFilter.setInputFormat(data);
      data = Filter.useFilter(data, m_TransformFilter);
      m_MissingFilter = new ReplaceMissingValues();
      m_MissingFilter.setInputFormat(data);
      data = Filter.useFilter(data, m_MissingFilter);
View Full Code Here

Examples of weka.filters.supervised.attribute.NominalToBinary

    m_replaceMissing = new ReplaceMissingValues();
    m_replaceMissing.setInputFormat(m_instances);
    m_instances = Filter.useFilter(m_instances, m_replaceMissing);

    m_nominalToBinary = new NominalToBinary();
    m_nominalToBinary.setInputFormat(m_instances);
    m_instances = Filter.useFilter(m_instances, m_nominalToBinary);

    m_removeUseless = new RemoveUseless();
    m_removeUseless.setInputFormat(m_instances);
View Full Code Here

Examples of weka.filters.unsupervised.attribute.NominalToBinary

    m_stopIt = true;
    m_stopped = true;
    m_accepted = false;
    m_numeric = false;
    m_random = null;
    m_nominalToBinaryFilter = new NominalToBinary();
    m_sigmoidUnit = new SigmoidUnit();
    m_linearUnit = new LinearUnit();
    //setting all the options to their defaults. To completely change these
    //defaults they will also need to be changed down the bottom in the
    //setoptions function (the text info in the accompanying functions should
View Full Code Here

Examples of weka.filters.unsupervised.attribute.NominalToBinary

    m_instances = new Instances(i);
    m_random = new Random(m_randomSeed);
    m_instances.randomize(m_random);

    if (m_useNomToBin) {
      m_nominalToBinaryFilter = new NominalToBinary();
      m_nominalToBinaryFilter.setInputFormat(m_instances);
      m_instances = Filter.useFilter(m_instances,
             m_nominalToBinaryFilter);
    }
    m_numAttributes = m_instances.numAttributes() - 1;
View Full Code Here

Examples of weka.filters.unsupervised.attribute.NominalToBinary

        }
      }
    }

    if (!onlyNumeric) {
      m_NominalToBinary = new NominalToBinary();
      m_NominalToBinary.setInputFormat(insts);
      insts = Filter.useFilter(insts, m_NominalToBinary);
    }
    return insts;
  }
View Full Code Here

Examples of weka.filters.unsupervised.attribute.NominalToBinary

    m_Train = new Instances(insts);
   
    m_ReplaceMissingValues = new ReplaceMissingValues();
    m_ReplaceMissingValues.setInputFormat(m_Train);
    m_Train = Filter.useFilter(m_Train, m_ReplaceMissingValues);
    m_NominalToBinary = new NominalToBinary();
    m_NominalToBinary.setInputFormat(m_Train);
    m_Train = Filter.useFilter(m_Train, m_NominalToBinary);

    /** Randomize training data */
    if(m_Seed != -1) {
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.