Examples of DiscreteDistribution


Examples of stallone.stat.DiscreteDistribution

    public MarkovChain(IDoubleArray _startingDistribution, IDoubleArray _T)
    {
        this.T = _T;
        dd = new DiscreteDistributions(_T);
        this.p0 = _startingDistribution;
        p0dist = new DiscreteDistribution(p0);
    }
View Full Code Here

Examples of stallone.stat.DiscreteDistribution

     */
    public void setStartingDistribution(IDoubleArray _p0)
    {
        fixedStartingState = false;
        p0 = _p0;
        p0dist = new DiscreteDistribution(p0);
    }
View Full Code Here

Examples of stallone.stat.DiscreteDistribution

        else
        {
            if (p0 == null)
            {
                p0 = msm.stationaryDistribution(T);
                p0dist = new DiscreteDistribution(p0);
            }
            return p0dist.sample();
        }
    }
View Full Code Here

Examples of stallone.stat.DiscreteDistribution

        // save memory?
        boolean saveMemory = false;

        // output model and parametrizer
        DiscreteDistribution dd = new DiscreteDistribution(initialParameters.getOutputParameters(0));
        dd.setPrior(prior);
        EM em = new EM(_obs, eventBased, initialParameters.getNStates(), initialParameters.isReversible(), dd, dd, saveMemory);
        em.setInitialParameters(initialParameters);

        return em;
    }
View Full Code Here

Examples of stallone.stat.DiscreteDistribution

        // save memory?
        boolean saveMemory = false;

        // output model and parametrizer
        DiscreteDistribution dd = new DiscreteDistribution(initialParameters.getOutputParameters(0));
        EM em = new EM(_obs, eventBased, initialParameters.getNStates(), initialParameters.isReversible(), dd, dd, saveMemory);
        em.setInitialParameters(initialParameters);

        return em;
    }
View Full Code Here

Examples of weka.classifiers.misc.monotone.DiscreteDistribution

      DiscreteEstimator df =
  (DiscreteEstimator) m_estimatedDistributions.get(cc);
      cc.getValues(attValues);
      switch(m_atype) {
  case AT_MEAN:
    attValues[attValues.length - 1] = (new DiscreteDistribution(df)).mean();
    break;
  case AT_MEDIAN:
    attValues[attValues.length - 1] = (new DiscreteDistribution(df)).median();
    break;
  case AT_MAXPROB:
    attValues[attValues.length - 1] = (new DiscreteDistribution(df)).modes()[0];
    break;
  default:
    throw new IllegalStateException("Not a valid averaging type");
      }
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.