Package co.paralleluniverse.strands.concurrent

Source Code of co.paralleluniverse.strands.concurrent.Phaser$QNode

/*
* Quasar: lightweight threads and actors for the JVM.
* Copyright (c) 2013-2014, Parallel Universe Software Co. All rights reserved.
*
* This program and the accompanying materials are dual-licensed under
* either the terms of the Eclipse Public License v1.0 as published by
* the Eclipse Foundation
*   or (per the licensee's choosing)
* under the terms of the GNU Lesser General Public License version 3.0
* as published by the Free Software Foundation.
*/
/*
* Based on code:
*/
/*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/
package co.paralleluniverse.strands.concurrent;

import co.paralleluniverse.common.util.UtilUnsafe;
import co.paralleluniverse.fibers.SuspendExecution;
import co.paralleluniverse.fibers.Suspendable;
import co.paralleluniverse.strands.Strand;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
import java.util.concurrent.atomic.AtomicReference;
import java.util.concurrent.locks.Lock;
import jsr166e.ForkJoinPool;

/**
* A reusable synchronization barrier, similar in functionality to
* {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
* {@link java.util.concurrent.CountDownLatch CountDownLatch}
* but supporting more flexible usage.
*
* <p> <b>Registration.</b> Unlike the case for other barriers, the
* number of parties <em>registered</em> to synchronize on a phaser
* may vary over time. Tasks may be registered at any time (using
* methods {@link #register}, {@link #bulkRegister}, or forms of
* constructors establishing initial numbers of parties), and
* optionally deregistered upon any arrival (using {@link
* #arriveAndDeregister}). As is the case with most basic
* synchronization constructs, registration and deregistration affect
* only internal counts; they do not establish any further internal
* bookkeeping, so tasks cannot query whether they are registered.
* (However, you can introduce such bookkeeping by subclassing this
* class.)
*
* <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
* Phaser} may be repeatedly awaited. Method {@link
* #arriveAndAwaitAdvance} has effect analogous to {@link
* java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
* generation of a phaser has an associated phase number. The phase
* number starts at zero, and advances when all parties arrive at the
* phaser, wrapping around to zero after reaching {@code
* Integer.MAX_VALUE}. The use of phase numbers enables independent
* control of actions upon arrival at a phaser and upon awaiting
* others, via two kinds of methods that may be invoked by any
* registered party:
*
* <ul>
*
* <li> <b>Arrival.</b> Methods {@link #arrive} and
* {@link #arriveAndDeregister} record arrival. These methods
* do not block, but return an associated <em>arrival phase
* number</em>; that is, the phase number of the phaser to which
* the arrival applied. When the final party for a given phase
* arrives, an optional action is performed and the phase
* advances. These actions are performed by the party
* triggering a phase advance, and are arranged by overriding
* method {@link #onAdvance(int, int)}, which also controls
* termination. Overriding this method is similar to, but more
* flexible than, providing a barrier action to a {@code
*       CyclicBarrier}.
*
* <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
* argument indicating an arrival phase number, and returns when
* the phaser advances to (or is already at) a different phase.
* Unlike similar constructions using {@code CyclicBarrier},
* method {@code awaitAdvance} continues to wait even if the
* waiting thread is interrupted. Interruptible and timeout
* versions are also available, but exceptions encountered while
* tasks wait interruptibly or with timeout do not change the
* state of the phaser. If necessary, you can perform any
* associated recovery within handlers of those exceptions,
* often after invoking {@code forceTermination}. Phasers may
* also be used by tasks executing in a {@link ForkJoinPool},
* which will ensure sufficient parallelism to execute tasks
* when others are blocked waiting for a phase to advance.
*
* </ul>
*
* <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
* state, that may be checked using method {@link #isTerminated}. Upon
* termination, all synchronization methods immediately return without
* waiting for advance, as indicated by a negative return value.
* Similarly, attempts to register upon termination have no effect.
* Termination is triggered when an invocation of {@code onAdvance}
* returns {@code true}. The default implementation returns {@code
* true} if a deregistration has caused the number of registered
* parties to become zero. As illustrated below, when phasers control
* actions with a fixed number of iterations, it is often convenient
* to override this method to cause termination when the current phase
* number reaches a threshold. Method {@link #forceTermination} is
* also available to abruptly release waiting threads and allow them
* to terminate.
*
* <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
* constructed in tree structures) to reduce contention. Phasers with
* large numbers of parties that would otherwise experience heavy
* synchronization contention costs may instead be set up so that
* groups of sub-phasers share a common parent. This may greatly
* increase throughput even though it incurs greater per-operation
* overhead.
*
* <p>In a tree of tiered phasers, registration and deregistration of
* child phasers with their parent are managed automatically.
* Whenever the number of registered parties of a child phaser becomes
* non-zero (as established in the {@link #Phaser(Phaser,int)}
* constructor, {@link #register}, or {@link #bulkRegister}), the
* child phaser is registered with its parent. Whenever the number of
* registered parties becomes zero as the result of an invocation of
* {@link #arriveAndDeregister}, the child phaser is deregistered
* from its parent.
*
* <p><b>Monitoring.</b> While synchronization methods may be invoked
* only by registered parties, the current state of a phaser may be
* monitored by any caller. At any given moment there are {@link
* #getRegisteredParties} parties in total, of which {@link
* #getArrivedParties} have arrived at the current phase ({@link
* #getPhase}). When the remaining ({@link #getUnarrivedParties})
* parties arrive, the phase advances. The values returned by these
* methods may reflect transient states and so are not in general
* useful for synchronization control. Method {@link #toString}
* returns snapshots of these state queries in a form convenient for
* informal monitoring.
*
* <p><b>Sample usages:</b>
*
* <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
* to control a one-shot action serving a variable number of parties.
* The typical idiom is for the method setting this up to first
* register, then start the actions, then deregister, as in:
*
* <pre> {@code
* void runTasks(List<Runnable> tasks) {
*   final Phaser phaser = new Phaser(1); // "1" to register self
*   // create and start threads
*   for (final Runnable task : tasks) {
*     phaser.register();
*     new Thread() {
*       public void run() {
*         phaser.arriveAndAwaitAdvance(); // await all creation
*         task.run();
*       }
*     }.start();
*   }
*
*   // allow threads to start and deregister self
*   phaser.arriveAndDeregister();
* }}</pre>
*
* <p>One way to cause a set of threads to repeatedly perform actions
* for a given number of iterations is to override {@code onAdvance}:
*
* <pre> {@code
* void startTasks(List<Runnable> tasks, final int iterations) {
*   final Phaser phaser = new Phaser() {
*     protected boolean onAdvance(int phase, int registeredParties) {
*       return phase >= iterations || registeredParties == 0;
*     }
*   };
*   phaser.register();
*   for (final Runnable task : tasks) {
*     phaser.register();
*     new Thread() {
*       public void run() {
*         do {
*           task.run();
*           phaser.arriveAndAwaitAdvance();
*         } while (!phaser.isTerminated());
*       }
*     }.start();
*   }
*   phaser.arriveAndDeregister(); // deregister self, don't wait
* }}</pre>
*
* If the main task must later await termination, it
* may re-register and then execute a similar loop:
* <pre> {@code
*   // ...
*   phaser.register();
*   while (!phaser.isTerminated())
*     phaser.arriveAndAwaitAdvance();}</pre>
*
* <p>Related constructions may be used to await particular phase numbers
* in contexts where you are sure that the phase will never wrap around
* {@code Integer.MAX_VALUE}. For example:
*
* <pre> {@code
* void awaitPhase(Phaser phaser, int phase) {
*   int p = phaser.register(); // assumes caller not already registered
*   while (p < phase) {
*     if (phaser.isTerminated())
*       // ... deal with unexpected termination
*     else
*       p = phaser.arriveAndAwaitAdvance();
*   }
*   phaser.arriveAndDeregister();
* }}</pre>
*
*
* <p>To create a set of {@code n} tasks using a tree of phasers, you
* could use code of the following form, assuming a Task class with a
* constructor accepting a {@code Phaser} that it registers with upon
* construction. After invocation of {@code build(new Task[n], 0, n,
* new Phaser())}, these tasks could then be started, for example by
* submitting to a pool:
*
<pre> {@code
* void build(Task[] tasks, int lo, int hi, Phaser ph) {
*   if (hi - lo > TASKS_PER_PHASER) {
*     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
*       int j = Math.min(i + TASKS_PER_PHASER, hi);
*       build(tasks, i, j, new Phaser(ph));
*     }
*   } else {
*     for (int i = lo; i < hi; ++i)
*       tasks[i] = new Task(ph);
*       // assumes new Task(ph) performs ph.register()
*   }
* }}</pre>
*
* The best value of {@code TASKS_PER_PHASER} depends mainly on
* expected synchronization rates. A value as low as four may
* be appropriate for extremely small per-phase task bodies (thus
* high rates), or up to hundreds for extremely large ones.
*
* <p><b>Implementation notes</b>: This implementation restricts the
* maximum number of parties to 65535. Attempts to register additional
* parties result in {@code IllegalStateException}. However, you can and
* should create tiered phasers to accommodate arbitrarily large sets
* of participants.
*
* @since 1.7
* @author Doug Lea
*/
public class Phaser {
    /*
     * This class implements an extension of X10 "clocks".  Thanks to
     * Vijay Saraswat for the idea, and to Vivek Sarkar for
     * enhancements to extend functionality.
     */
    /**
     * Primary state representation, holding four bit-fields:
     *
     * unarrived -- the number of parties yet to hit barrier (bits 0-15)
     * parties -- the number of parties to wait (bits 16-31)
     * phase -- the generation of the barrier (bits 32-62)
     * terminated -- set if barrier is terminated (bit 63 / sign)
     *
     * Except that a phaser with no registered parties is
     * distinguished by the otherwise illegal state of having zero
     * parties and one unarrived parties (encoded as EMPTY below).
     *
     * To efficiently maintain atomicity, these values are packed into
     * a single (atomic) long. Good performance relies on keeping
     * state decoding and encoding simple, and keeping race windows
     * short.
     *
     * All state updates are performed via CAS except initial
     * registration of a sub-phaser (i.e., one with a non-null
     * parent). In this (relatively rare) case, we use built-in
     * synchronization to lock while first registering with its
     * parent.
     *
     * The phase of a subphaser is allowed to lag that of its
     * ancestors until it is actually accessed -- see method
     * reconcileState.
     */
    private volatile long state;
    private static final int MAX_PARTIES = 0xffff;
    private static final int MAX_PHASE = Integer.MAX_VALUE;
    private static final int PARTIES_SHIFT = 16;
    private static final int PHASE_SHIFT = 32;
    private static final int UNARRIVED_MASK = 0xffff;      // to mask ints
    private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
    private static final long TERMINATION_BIT = 1L << 63;
    // some special values
    private static final int ONE_ARRIVAL = 1;
    private static final int ONE_PARTY = 1 << PARTIES_SHIFT;
    private static final int EMPTY = 1;

    // The following unpacking methods are usually manually inlined
    private static int unarrivedOf(long s) {
        int counts = (int) s;
        return (counts == EMPTY) ? 0 : counts & UNARRIVED_MASK;
    }

    private static int partiesOf(long s) {
        return (int) s >>> PARTIES_SHIFT;
    }

    private static int phaseOf(long s) {
        return (int) (s >>> PHASE_SHIFT);
    }

    private static int arrivedOf(long s) {
        int counts = (int) s;
        return (counts == EMPTY) ? 0
                : (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
    }
    /**
     * The parent of this phaser, or null if none
     */
    private final Phaser parent;
    /**
     * The root of phaser tree. Equals this if not in a tree.
     */
    private final Phaser root;
    private final Lock mainLock = new ReentrantLock();
    /**
     * Heads of Treiber stacks for waiting threads. To eliminate
     * contention when releasing some threads while adding others, we
     * use two of them, alternating across even and odd phases.
     * Subphasers share queues with root to speed up releases.
     */
    private final AtomicReference<QNode> evenQ;
    private final AtomicReference<QNode> oddQ;

    private AtomicReference<QNode> queueFor(int phase) {
        return ((phase & 1) == 0) ? evenQ : oddQ;
    }

    /**
     * Returns message string for bounds exceptions on arrival.
     */
    private String badArrive(long s) {
        return "Attempted arrival of unregistered party for " + stateToString(s);
    }

    /**
     * Returns message string for bounds exceptions on registration.
     */
    private String badRegister(long s) {
        return "Attempt to register more than " + MAX_PARTIES + " parties for " + stateToString(s);
    }

    /**
     * Main implementation for methods arrive and arriveAndDeregister.
     * Manually tuned to speed up and minimize race windows for the
     * common case of just decrementing unarrived field.
     *
     * @param deregister false for arrive, true for arriveAndDeregister
     */
    private int doArrive(boolean deregister) {
        int adj = deregister ? ONE_ARRIVAL | ONE_PARTY : ONE_ARRIVAL;
        final Phaser root = this.root;
        for (;;) {
            long s = (root == this) ? state : reconcileState();
            int phase = (int) (s >>> PHASE_SHIFT);
            int counts = (int) s;
            int unarrived = (counts & UNARRIVED_MASK) - 1;
            if (phase < 0)
                return phase;
            else if (counts == EMPTY || unarrived < 0) {
                if (root == this || reconcileState() == s)
                    throw new IllegalStateException(badArrive(s));
            } else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s -= adj)) {
                if (unarrived == 0) {
                    long n = s & PARTIES_MASK;  // base of next state
                    int nextUnarrived = (int) n >>> PARTIES_SHIFT;
                    if (root != this)
                        return parent.doArrive(nextUnarrived == 0);
                    // System.out.println("PHASER " + (System.currentTimeMillis() % 300000) + " " + (int) (state >>> PHASE_SHIFT) + " " + Fiber.currentFiber() + " " + Thread.currentThread() + " - doArrive");
                    if (onAdvance(phase, nextUnarrived))
                        n |= TERMINATION_BIT;
                    else if (nextUnarrived == 0)
                        n |= EMPTY;
                    else
                        n |= nextUnarrived;
                    n |= (long) ((phase + 1) & MAX_PHASE) << PHASE_SHIFT;
                    UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
                    releaseWaiters(phase);
                }
                return phase;
            }
        }
    }

    /**
     * Implementation of register, bulkRegister
     *
     * @param registrations number to add to both parties and
     * unarrived fields. Must be greater than zero.
     */
    private int doRegister(int registrations) throws SuspendExecution {
        // adjustment to state
        long adj = ((long) registrations << PARTIES_SHIFT) | registrations;
        final Phaser parent = this.parent;
        int phase;
        for (;;) {
            long s = state;
            int counts = (int) s;
            int parties = counts >>> PARTIES_SHIFT;
            int unarrived = counts & UNARRIVED_MASK;
            if (registrations > MAX_PARTIES - parties)
                throw new IllegalStateException(badRegister(s));
            else if ((phase = (int) (s >>> PHASE_SHIFT)) < 0)
                break;
            else if (counts != EMPTY) {             // not 1st registration
                if (parent == null || reconcileState() == s) {
                    if (unarrived == 0)             // wait out advance
                        root.internalAwaitAdvance(phase, null); // does not block when node == null
                    else if (UNSAFE.compareAndSwapLong(this, stateOffset,
                            s, s + adj))
                        break;
                }
            } else if (parent == null) {              // 1st root registration
                long next = ((long) phase << PHASE_SHIFT) | adj;
                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
                    break;
            } else {
                // System.out.println("PHASER " + (System.currentTimeMillis() % 300000) + " " + (int) (state >>> PHASE_SHIFT) + " " + Fiber.currentFiber() + " " + Thread.currentThread() + " - LOCK");
                mainLock.lock();
                try {               // 1st sub registration
                    if (state == s) {               // recheck under lock
                        parent.doRegister(1);
                        do {                        // force current phase
                            phase = (int) (root.state >>> PHASE_SHIFT);
                            // assert phase < 0 || (int)state == EMPTY;
                        } while (!UNSAFE.compareAndSwapLong(this, stateOffset, state,
                                ((long) phase << PHASE_SHIFT) | adj));
                        break;
                    }
                } finally {
                    mainLock.unlock();
                }
            }
        }
        return phase;
    }

    /**
     * Resolves lagged phase propagation from root if necessary.
     * Reconciliation normally occurs when root has advanced but
     * subphasers have not yet done so, in which case they must finish
     * their own advance by setting unarrived to parties (or if
     * parties is zero, resetting to unregistered EMPTY state).
     * However, this method may also be called when "floating"
     * subphasers with possibly some unarrived parties are merely
     * catching up to current phase, in which case counts are
     * unaffected.
     *
     * @return reconciled state
     */
    private long reconcileState() {
        final Phaser root = this.root;
        long s = state;
        if (root != this) {
            int phase, u, p;
            // CAS root phase with current parties; possibly trip unarrived
            while ((phase = (int) (root.state >>> PHASE_SHIFT))
                    != (int) (s >>> PHASE_SHIFT)
                    && !UNSAFE.compareAndSwapLong(this, stateOffset, s,
                    s = (((long) phase << PHASE_SHIFT)
                    | (s & PARTIES_MASK)
                    | ((p = (int) s >>> PARTIES_SHIFT) == 0 ? EMPTY
                    : (u = (int) s & UNARRIVED_MASK) == 0 ? p : u))))
                s = state;
        }
        return s;
    }

    /**
     * Creates a new phaser with no initially registered parties, no
     * parent, and initial phase number 0. Any thread using this
     * phaser will need to first register for it.
     */
    public Phaser() {
        this(null, 0);
    }

    /**
     * Creates a new phaser with the given number of registered
     * unarrived parties, no parent, and initial phase number 0.
     *
     * @param parties the number of parties required to advance to the
     * next phase
     * @throws IllegalArgumentException if parties less than zero
     * or greater than the maximum number of parties supported
     */
    public Phaser(int parties) {
        this(null, parties);
    }

    /**
     * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
     *
     * @param parent the parent phaser
     */
    public Phaser(Phaser parent) {
        this(parent, 0);
    }

    /**
     * Creates a new phaser with the given parent and number of
     * registered unarrived parties. When the given parent is non-null
     * and the given number of parties is greater than zero, this
     * child phaser is registered with its parent.
     *
     * @param parent the parent phaser
     * @param parties the number of parties required to advance to the
     * next phase
     * @throws IllegalArgumentException if parties less than zero
     * or greater than the maximum number of parties supported
     */
    public Phaser(Phaser parent, int parties) {
        if (parties >>> PARTIES_SHIFT != 0)
            throw new IllegalArgumentException("Illegal number of parties");
        int phase = 0;
        this.parent = parent;
        if (parent != null) {
            final Phaser root = parent.root;
            this.root = root;
            this.evenQ = root.evenQ;
            this.oddQ = root.oddQ;
            if (parties != 0) {
                try {
                    phase = parent.doRegister(1); // never blocks here
                } catch (SuspendExecution e) {
                    throw new AssertionError(e);
                }
            }
        } else {
            this.root = this;
            this.evenQ = new AtomicReference<QNode>();
            this.oddQ = new AtomicReference<QNode>();
        }
        this.state = (parties == 0) ? (long) EMPTY
                : ((long) phase << PHASE_SHIFT)
                | ((long) parties << PARTIES_SHIFT)
                | ((long) parties);
    }

    /**
     * Adds a new unarrived party to this phaser. If an ongoing
     * invocation of {@link #onAdvance} is in progress, this method
     * may await its completion before returning. If this phaser has
     * a parent, and this phaser previously had no registered parties,
     * this child phaser is also registered with its parent. If
     * this phaser is terminated, the attempt to register has
     * no effect, and a negative value is returned.
     *
     * @return the arrival phase number to which this registration
     * applied. If this value is negative, then this phaser has
     * terminated, in which case registration has no effect.
     * @throws IllegalStateException if attempting to register more
     * than the maximum supported number of parties
     */
    @Suspendable
    public int register() {
        try {
            return doRegister(1);
        } catch (SuspendExecution e) {
            throw new AssertionError(e);
        }
    }

    /**
     * Adds the given number of new unarrived parties to this phaser.
     * If an ongoing invocation of {@link #onAdvance} is in progress,
     * this method may await its completion before returning. If this
     * phaser has a parent, and the given number of parties is greater
     * than zero, and this phaser previously had no registered
     * parties, this child phaser is also registered with its parent.
     * If this phaser is terminated, the attempt to register has no
     * effect, and a negative value is returned.
     *
     * @param parties the number of additional parties required to
     * advance to the next phase
     * @return the arrival phase number to which this registration
     * applied. If this value is negative, then this phaser has
     * terminated, in which case registration has no effect.
     * @throws IllegalStateException if attempting to register more
     * than the maximum supported number of parties
     * @throws IllegalArgumentException if {@code parties < 0}
     */
    @Suspendable
    public int bulkRegister(int parties) {
        try {
            if (parties < 0)
                throw new IllegalArgumentException();
            if (parties == 0)
                return getPhase();
            return doRegister(parties);
        } catch (SuspendExecution e) {
            throw new AssertionError(e);
        }
    }

    /**
     * Arrives at this phaser, without waiting for others to arrive.
     *
     * <p>It is a usage error for an unregistered party to invoke this
     * method. However, this error may result in an {@code
     * IllegalStateException} only upon some subsequent operation on
     * this phaser, if ever.
     *
     * @return the arrival phase number, or a negative value if terminated
     * @throws IllegalStateException if not terminated and the number
     * of unarrived parties would become negative
     */
    public int arrive() {
        return doArrive(false);
    }

    /**
     * Arrives at this phaser and deregisters from it without waiting
     * for others to arrive. Deregistration reduces the number of
     * parties required to advance in future phases. If this phaser
     * has a parent, and deregistration causes this phaser to have
     * zero parties, this phaser is also deregistered from its parent.
     *
     * <p>It is a usage error for an unregistered party to invoke this
     * method. However, this error may result in an {@code
     * IllegalStateException} only upon some subsequent operation on
     * this phaser, if ever.
     *
     * @return the arrival phase number, or a negative value if terminated
     * @throws IllegalStateException if not terminated and the number
     * of registered or unarrived parties would become negative
     */
    public int arriveAndDeregister() {
        return doArrive(true);
    }

    /**
     * Arrives at this phaser and awaits others. Equivalent in effect
     * to {@code awaitAdvance(arrive())}. If you need to await with
     * interruption or timeout, you can arrange this with an analogous
     * construction using one of the other forms of the {@code
     * awaitAdvance} method. If instead you need to deregister upon
     * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
     *
     * <p>It is a usage error for an unregistered party to invoke this
     * method. However, this error may result in an {@code
     * IllegalStateException} only upon some subsequent operation on
     * this phaser, if ever.
     *
     * @return the arrival phase number, or the (negative)
     * {@linkplain #getPhase() current phase} if terminated
     * @throws IllegalStateException if not terminated and the number
     * of unarrived parties would become negative
     */
    @Suspendable
    public int arriveAndAwaitAdvance() {
        try {
            // Specialization of doArrive+awaitAdvance eliminating some reads/paths
            final Phaser root = this.root;
            for (;;) {
                long s = (root == this) ? state : reconcileState();
                int phase = (int) (s >>> PHASE_SHIFT);
                int counts = (int) s;
                int unarrived = (counts & UNARRIVED_MASK) - 1;
                if (phase < 0)
                    return phase;
                else if (counts == EMPTY || unarrived < 0) {
                    if (reconcileState() == s)
                        throw new IllegalStateException(badArrive(s));
                } else if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
                        s -= ONE_ARRIVAL)) {
                    if (unarrived != 0)
                        return root.internalAwaitAdvance(phase, null);
                    if (root != this)
                        return parent.arriveAndAwaitAdvance();
                    long n = s & PARTIES_MASK;  // base of next state
                    int nextUnarrived = (int) n >>> PARTIES_SHIFT;
                    if (onAdvance(phase, nextUnarrived))
                        n |= TERMINATION_BIT;
                    else if (nextUnarrived == 0)
                        n |= EMPTY;
                    else
                        n |= nextUnarrived;
                    int nextPhase = (phase + 1) & MAX_PHASE;
                    n |= (long) nextPhase << PHASE_SHIFT;
                    if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
                        return (int) (state >>> PHASE_SHIFT); // terminated
                    releaseWaiters(phase);
                    return nextPhase;
                }
            }
        } catch (SuspendExecution e) {
            throw new AssertionError(e);
        }
    }

    /**
     * Awaits the phase of this phaser to advance from the given phase
     * value, returning immediately if the current phase is not equal
     * to the given phase value or this phaser is terminated.
     *
     * @param phase an arrival phase number, or negative value if
     * terminated; this argument is normally the value returned by a
     * previous call to {@code arrive} or {@code arriveAndDeregister}.
     * @return the next arrival phase number, or the argument if it is
     * negative, or the (negative) {@linkplain #getPhase() current phase}
     * if terminated
     */
    @Suspendable
    public int awaitAdvance(int phase) {
        try {
            final Phaser root = this.root;
            long s = (root == this) ? state : reconcileState();
            int p = (int) (s >>> PHASE_SHIFT);
            if (phase < 0)
                return phase;
            if (p == phase)
                return root.internalAwaitAdvance(phase, null);
            return p;
        } catch (SuspendExecution e) {
            throw new AssertionError(e);
        }
    }

    /**
     * Awaits the phase of this phaser to advance from the given phase
     * value, throwing {@code InterruptedException} if interrupted
     * while waiting, or returning immediately if the current phase is
     * not equal to the given phase value or this phaser is
     * terminated.
     *
     * @param phase an arrival phase number, or negative value if
     * terminated; this argument is normally the value returned by a
     * previous call to {@code arrive} or {@code arriveAndDeregister}.
     * @return the next arrival phase number, or the argument if it is
     * negative, or the (negative) {@linkplain #getPhase() current phase}
     * if terminated
     * @throws InterruptedException if thread interrupted while waiting
     */
    @Suspendable
    public int awaitAdvanceInterruptibly(int phase) throws InterruptedException {
        try {
            final Phaser root = this.root;
            long s = (root == this) ? state : reconcileState();
            int p = (int) (s >>> PHASE_SHIFT);
            if (phase < 0)
                return phase;
            if (p == phase) {
                QNode node = new QNode(this, phase, true, false, 0L);
                p = root.internalAwaitAdvance(phase, node);
                if (node.wasInterrupted)
                    throw new InterruptedException();
            }
            return p;
        } catch (SuspendExecution e) {
            throw new AssertionError(e);
        }
    }

    /**
     * Awaits the phase of this phaser to advance from the given phase
     * value or the given timeout to elapse, throwing {@code
     * InterruptedException} if interrupted while waiting, or
     * returning immediately if the current phase is not equal to the
     * given phase value or this phaser is terminated.
     *
     * @param phase an arrival phase number, or negative value if
     * terminated; this argument is normally the value returned by a
     * previous call to {@code arrive} or {@code arriveAndDeregister}.
     * @param timeout how long to wait before giving up, in units of
     * {@code unit}
     * @param unit a {@code TimeUnit} determining how to interpret the
     * {@code timeout} parameter
     * @return the next arrival phase number, or the argument if it is
     * negative, or the (negative) {@linkplain #getPhase() current phase}
     * if terminated
     * @throws InterruptedException if thread interrupted while waiting
     * @throws TimeoutException if timed out while waiting
     */
    @Suspendable
    public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit) throws InterruptedException, TimeoutException {
        try {
            long nanos = unit.toNanos(timeout);
            final Phaser root = this.root;
            long s = (root == this) ? state : reconcileState();
            int p = (int) (s >>> PHASE_SHIFT);
            if (phase < 0)
                return phase;
            if (p == phase) {
                QNode node = new QNode(this, phase, true, true, nanos);
                p = root.internalAwaitAdvance(phase, node);
                if (node.wasInterrupted)
                    throw new InterruptedException();
                else if (p == phase)
                    throw new TimeoutException();
            }
            return p;
        } catch (SuspendExecution e) {
            throw new AssertionError(e);
        }
    }

    /**
     * Forces this phaser to enter termination state. Counts of
     * registered parties are unaffected. If this phaser is a member
     * of a tiered set of phasers, then all of the phasers in the set
     * are terminated. If this phaser is already terminated, this
     * method has no effect. This method may be useful for
     * coordinating recovery after one or more tasks encounter
     * unexpected exceptions.
     */
    public void forceTermination() {
        // Only need to change root state
        final Phaser root = this.root;
        long s;
        while ((s = root.state) >= 0) {
            if (UNSAFE.compareAndSwapLong(root, stateOffset,
                    s, s | TERMINATION_BIT)) {
                // signal all threads
                releaseWaiters(0);
                releaseWaiters(1);
                return;
            }
        }
    }

    /**
     * Returns the current phase number. The maximum phase number is
     * {@code Integer.MAX_VALUE}, after which it restarts at
     * zero. Upon termination, the phase number is negative,
     * in which case the prevailing phase prior to termination
     * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
     *
     * @return the phase number, or a negative value if terminated
     */
    public final int getPhase() {
        return (int) (root.state >>> PHASE_SHIFT);
    }

    /**
     * Returns the number of parties registered at this phaser.
     *
     * @return the number of parties
     */
    public int getRegisteredParties() {
        return partiesOf(state);
    }

    /**
     * Returns the number of registered parties that have arrived at
     * the current phase of this phaser. If this phaser has terminated,
     * the returned value is meaningless and arbitrary.
     *
     * @return the number of arrived parties
     */
    public int getArrivedParties() {
        return arrivedOf(reconcileState());
    }

    /**
     * Returns the number of registered parties that have not yet
     * arrived at the current phase of this phaser. If this phaser has
     * terminated, the returned value is meaningless and arbitrary.
     *
     * @return the number of unarrived parties
     */
    public int getUnarrivedParties() {
        return unarrivedOf(reconcileState());
    }

    /**
     * Returns the parent of this phaser, or {@code null} if none.
     *
     * @return the parent of this phaser, or {@code null} if none
     */
    public Phaser getParent() {
        return parent;
    }

    /**
     * Returns the root ancestor of this phaser, which is the same as
     * this phaser if it has no parent.
     *
     * @return the root ancestor of this phaser
     */
    public Phaser getRoot() {
        return root;
    }

    /**
     * Returns {@code true} if this phaser has been terminated.
     *
     * @return {@code true} if this phaser has been terminated
     */
    public boolean isTerminated() {
        return root.state < 0L;
    }

    /**
     * Overridable method to perform an action upon impending phase
     * advance, and to control termination. This method is invoked
     * upon arrival of the party advancing this phaser (when all other
     * waiting parties are dormant). If this method returns {@code
     * true}, this phaser will be set to a final termination state
     * upon advance, and subsequent calls to {@link #isTerminated}
     * will return true. Any (unchecked) Exception or Error thrown by
     * an invocation of this method is propagated to the party
     * attempting to advance this phaser, in which case no advance
     * occurs.
     *
     * <p>The arguments to this method provide the state of the phaser
     * prevailing for the current transition. The effects of invoking
     * arrival, registration, and waiting methods on this phaser from
     * within {@code onAdvance} are unspecified and should not be
     * relied on.
     *
     * <p>If this phaser is a member of a tiered set of phasers, then
     * {@code onAdvance} is invoked only for its root phaser on each
     * advance.
     *
     * <p>To support the most common use cases, the default
     * implementation of this method returns {@code true} when the
     * number of registered parties has become zero as the result of a
     * party invoking {@code arriveAndDeregister}. You can disable
     * this behavior, thus enabling continuation upon future
     * registrations, by overriding this method to always return
     * {@code false}:
     *
     * <pre> {@code
     * Phaser phaser = new Phaser() {
     *   protected boolean onAdvance(int phase, int parties) { return false; }
     * }}</pre>
     *
     * @param phase the current phase number on entry to this method,
     * before this phaser is advanced
     * @param registeredParties the current number of registered parties
     * @return {@code true} if this phaser should terminate
     */
    protected boolean onAdvance(int phase, int registeredParties) {
        return registeredParties == 0;
    }

    /**
     * Returns a string identifying this phaser, as well as its
     * state. The state, in brackets, includes the String {@code
     * "phase = "} followed by the phase number, {@code "parties = "}
     * followed by the number of registered parties, and {@code
     * "arrived = "} followed by the number of arrived parties.
     *
     * @return a string identifying this phaser, as well as its state
     */
    public String toString() {
        return stateToString(reconcileState());
    }

    /**
     * Implementation of toString and string-based error messages
     */
    private String stateToString(long s) {
        return super.toString()
                + "[phase = " + phaseOf(s)
                + " parties = " + partiesOf(s)
                + " arrived = " + arrivedOf(s) + "]";
    }

    // Waiting mechanics
    /**
     * Removes and signals threads from queue for phase.
     */
    private void releaseWaiters(int phase) {
        QNode q;   // first element of queue
        Strand t;  // its strand
        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
        // int total = 0;  // contention profiling
        // int failed = 0; // contention profiling
        while ((q = head.get()) != null
                && q.phase != (int) (root.state >>> PHASE_SHIFT)) {
            if (head.compareAndSet(q, q.next)
                    && (t = q.strand) != null) {
                q.strand = null;
                // System.out.println("PHASER " + (System.currentTimeMillis() % 300000) + " " + (int) (state >>> PHASE_SHIFT) + " "  + Fiber.currentFiber() + " " + Thread.currentThread() + " - " + t);
                Strand.unpark(t);
            }
            // else
            //    failed++;
            // total++;
        }
        // if (total > 0)
        //    System.out.println("PHASER: " + Fiber.currentFiber() + " releaseWaiters: " + failed + '/' + total + " " + ((double)failed / total));
    }

    /**
     * Variant of releaseWaiters that additionally tries to remove any
     * nodes no longer waiting for advance due to timeout or
     * interrupt. Currently, nodes are removed only if they are at
     * head of queue, which suffices to reduce memory footprint in
     * most usages.
     *
     * @return current phase on exit
     */
    private int abortWait(int phase) {
        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
        // int total = 0;  // contention profiling
        //int failed = 0; // contention profiling
        for (;;) {
            Strand t;
            QNode q = head.get();
            int p = (int) (root.state >>> PHASE_SHIFT);
            if (q == null || ((t = q.strand) != null && q.phase == p)) {
                // if (total > 0)
                //    System.out.println("PHASER: " + Fiber.currentFiber() + " abortWait: " + failed + '/' + total + " " + ((double)failed / total));
                return p;
            }
            if (head.compareAndSet(q, q.next) && t != null) {
                q.strand = null;
                Strand.unpark(t);
            }
            // else
            //   failed++;
            // total++;
        }
    }
    /**
     * The number of CPUs, for spin control
     */
    private static final int NCPU = Runtime.getRuntime().availableProcessors();
    /**
     * The number of times to spin before blocking while waiting for
     * advance, per arrival while waiting. On multiprocessors, fully
     * blocking and waking up a large number of threads all at once is
     * usually a very slow process, so we use rechargeable spins to
     * avoid it when threads regularly arrive: When a thread in
     * internalAwaitAdvance notices another arrival before blocking,
     * and there appear to be enough CPUs available, it spins
     * SPINS_PER_ARRIVAL more times before blocking. The value trades
     * off good-citizenship vs big unnecessary slowdowns.
     */
    static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;

    /**
     * Possibly blocks and waits for phase to advance unless aborted.
     * Call only from root node.
     *
     * @param phase current phase
     * @param node if non-null, the wait node to track interrupt and timeout;
     * if null, denotes noninterruptible wait
     * @return current phase
     */
    private int internalAwaitAdvance(int phase, QNode node) throws SuspendExecution {
        releaseWaiters(phase - 1);          // ensure old queue clean
        boolean queued = false;           // true when node is enqueued
        int lastUnarrived = 0;            // to increase spins upon change

        final int spinDelta = Strand.isCurrentFiber() ? 0 : SPINS_PER_ARRIVAL;
        int spins = spinDelta;
        long s;
        int p;
        while ((p = (int) ((s = state) >>> PHASE_SHIFT)) == phase) {
            if (node == null) {           // spinning in noninterruptible mode
                int unarrived = (int) s & UNARRIVED_MASK;
                if (unarrived != lastUnarrived
                        && (lastUnarrived = unarrived) < NCPU)
                    spins += spinDelta;
                boolean interrupted = Strand.interrupted();
                if (interrupted || --spins < 0) { // need node to record intr
                    node = new QNode(this, phase, false, false, 0L);
                    node.wasInterrupted = interrupted;
                }
            } else if (node.isReleasable()) // done or aborted
                break;
            else if (!queued) {           // push onto queue
                AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
                QNode q = node.next = head.get();
                if ((q == null || q.phase == phase)
                        && (int) (state >>> PHASE_SHIFT) == phase) // avoid stale enq
                    queued = head.compareAndSet(q, node);
            } else {
                try {
                    do {
                    } while (!node.isReleasable() && !node.block());
                } catch (InterruptedException ie) {
                    node.wasInterrupted = true;
                }
            }
        }

        if (node != null) {
            if (node.strand != null)
                node.strand = null;       // avoid need for unpark()
            if (node.wasInterrupted && !node.interruptible)
                Strand.currentStrand().interrupt();
            if (p == phase && (p = (int) (state >>> PHASE_SHIFT)) == phase)
                return abortWait(phase); // possibly clean up on abort
        }
        releaseWaiters(phase);
        return p;
    }

    /**
     * Wait nodes for Treiber stack representing wait queue
     */
    static final class QNode {
        final Phaser phaser;
        final int phase;
        final boolean interruptible;
        final boolean timed;
        boolean wasInterrupted;
        long nanos;
        long lastTime;
        volatile Strand strand; // nulled to cancel wait
        QNode next;

        QNode(Phaser phaser, int phase, boolean interruptible,
                boolean timed, long nanos) {
            this.phaser = phaser;
            this.phase = phase;
            this.interruptible = interruptible;
            this.nanos = nanos;
            this.timed = timed;
            this.lastTime = timed ? System.nanoTime() : 0L;
            strand = Strand.currentStrand();
        }

        public boolean isReleasable() {
            if (strand == null)
                return true;
            if (phaser.getPhase() != phase) {
                strand = null;
                return true;
            }
            if (Strand.interrupted())
                wasInterrupted = true;
            if (wasInterrupted && interruptible) {
                strand = null;
                return true;
            }
            if (timed) {
                if (nanos > 0L) {
                    long now = System.nanoTime();
                    nanos -= now - lastTime;
                    lastTime = now;
                }
                if (nanos <= 0L) {
                    strand = null;
                    return true;
                }
            }
            return false;
        }

        public boolean block() throws InterruptedException, SuspendExecution {
            if (isReleasable())
                return true;
            else if (!timed) {
                // System.out.println("PHASER " + (System.currentTimeMillis() % 300000) + " " + phase + " " + Fiber.currentFiber() + " " + Thread.currentThread() + " - BLOCKED");
                Strand.park(this);
            } else if (nanos > 0)
                Strand.parkNanos(this, nanos);
            return isReleasable();
        }
    }
    // Unsafe mechanics
    private static final sun.misc.Unsafe UNSAFE;
    private static final long stateOffset;

    static {
        try {
            UNSAFE = UtilUnsafe.getUnsafe();
            Class k = Phaser.class;
            stateOffset = UNSAFE.objectFieldOffset(k.getDeclaredField("state"));
        } catch (Exception e) {
            throw new Error(e);
        }
    }
}
TOP

Related Classes of co.paralleluniverse.strands.concurrent.Phaser$QNode

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.