Package edu.emory.mathcs.backport.java.util.concurrent

Source Code of edu.emory.mathcs.backport.java.util.concurrent.ConcurrentHashMap$EntrySet

/*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/

package edu.emory.mathcs.backport.java.util.concurrent;
import edu.emory.mathcs.backport.java.util.concurrent.locks.*;
import edu.emory.mathcs.backport.java.util.AbstractMap.SimpleEntry;
import java.util.*;
import java.io.Serializable;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;

/**
* A hash table supporting full concurrency of retrievals and
* adjustable expected concurrency for updates. This class obeys the
* same functional specification as {@link java.util.Hashtable}, and
* includes versions of methods corresponding to each method of
* <tt>Hashtable</tt>. However, even though all operations are
* thread-safe, retrieval operations do <em>not</em> entail locking,
* and there is <em>not</em> any support for locking the entire table
* in a way that prevents all access.  This class is fully
* interoperable with <tt>Hashtable</tt> in programs that rely on its
* thread safety but not on its synchronization details.
*
* <p> Retrieval operations (including <tt>get</tt>) generally do not
* block, so may overlap with update operations (including
* <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
* of the most recently <em>completed</em> update operations holding
* upon their onset.  For aggregate operations such as <tt>putAll</tt>
* and <tt>clear</tt>, concurrent retrievals may reflect insertion or
* removal of only some entries.  Similarly, Iterators and
* Enumerations return elements reflecting the state of the hash table
* at some point at or since the creation of the iterator/enumeration.
* They do <em>not</em> throw {@link ConcurrentModificationException}.
* However, iterators are designed to be used by only one thread at a time.
*
* <p> The allowed concurrency among update operations is guided by
* the optional <tt>concurrencyLevel</tt> constructor argument
* (default <tt>16</tt>), which is used as a hint for internal sizing.  The
* table is internally partitioned to try to permit the indicated
* number of concurrent updates without contention. Because placement
* in hash tables is essentially random, the actual concurrency will
* vary.  Ideally, you should choose a value to accommodate as many
* threads as will ever concurrently modify the table. Using a
* significantly higher value than you need can waste space and time,
* and a significantly lower value can lead to thread contention. But
* overestimates and underestimates within an order of magnitude do
* not usually have much noticeable impact. A value of one is
* appropriate when it is known that only one thread will modify and
* all others will only read. Also, resizing this or any other kind of
* hash table is a relatively slow operation, so, when possible, it is
* a good idea to provide estimates of expected table sizes in
* constructors.
*
* <p>This class and its views and iterators implement all of the
* <em>optional</em> methods of the {@link Map} and {@link Iterator}
* interfaces.
*
* <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
* does <em>not</em> allow <tt>null</tt> to be used as a key or value.
*
* <p>This class is a member of the
* <a href="{@docRoot}/../guide/collections/index.html">
* Java Collections Framework</a>.
*
* @since 1.5
* @author Doug Lea
*/
public class ConcurrentHashMap extends AbstractMap
        implements ConcurrentMap, Serializable {
    private static final long serialVersionUID = 7249069246763182397L;

    /*
     * The basic strategy is to subdivide the table among Segments,
     * each of which itself is a concurrently readable hash table.
     */

    /* ---------------- Constants -------------- */

    /**
     * The default initial capacity for this table,
     * used when not otherwise specified in a constructor.
     */
    static final int DEFAULT_INITIAL_CAPACITY = 16;

    /**
     * The default load factor for this table, used when not
     * otherwise specified in a constructor.
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    /**
     * The default concurrency level for this table, used when not
     * otherwise specified in a constructor.
     */
    static final int DEFAULT_CONCURRENCY_LEVEL = 16;

    /**
     * The maximum capacity, used if a higher value is implicitly
     * specified by either of the constructors with arguments.  MUST
     * be a power of two <= 1<<30 to ensure that entries are indexable
     * using ints.
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;

    /**
     * The maximum number of segments to allow; used to bound
     * constructor arguments.
     */
    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative

    /**
     * Number of unsynchronized retries in size and containsValue
     * methods before resorting to locking. This is used to avoid
     * unbounded retries if tables undergo continuous modification
     * which would make it impossible to obtain an accurate result.
     */
    static final int RETRIES_BEFORE_LOCK = 2;

    /* ---------------- Fields -------------- */

    /**
     * Mask value for indexing into segments. The upper bits of a
     * key's hash code are used to choose the segment.
     */
    final int segmentMask;

    /**
     * Shift value for indexing within segments.
     */
    final int segmentShift;

    /**
     * The segments, each of which is a specialized hash table
     */
    final Segment[] segments;

    transient Set keySet;
    transient Set entrySet;
    transient Collection values;

    /* ---------------- Small Utilities -------------- */

    /**
     * Returns a hash code for non-null Object x.
     * Uses the same hash code spreader as most other java.util hash tables.
     * @param x the object serving as a key
     * @return the hash code
     */
    static int hash(Object x) {
        int h = x.hashCode();
        h += ~(h << 9);
        h ^=  (h >>> 14);
        h +=  (h << 4);
        h ^=  (h >>> 10);
        return h;
    }

    /**
     * Returns the segment that should be used for key with given hash
     * @param hash the hash code for the key
     * @return the segment
     */
    final Segment segmentFor(int hash) {
        return segments[(hash >>> segmentShift) & segmentMask];
    }

    /* ---------------- Inner Classes -------------- */

    /**
     * ConcurrentHashMap list entry. Note that this is never exported
     * out as a user-visible Map.Entry.
     *
     * Because the value field is volatile, not final, it is legal wrt
     * the Java Memory Model for an unsynchronized reader to see null
     * instead of initial value when read via a data race.  Although a
     * reordering leading to this is not likely to ever actually
     * occur, the Segment.readValueUnderLock method is used as a
     * backup in case a null (pre-initialized) value is ever seen in
     * an unsynchronized access method.
     */
    static final class HashEntry {
        final Object key;
        final int hash;
        volatile Object value;
        final HashEntry next;

        HashEntry(Object key, int hash, HashEntry next, Object value) {
            this.key = key;
            this.hash = hash;
            this.next = next;
            this.value = value;
        }

        static final  HashEntry[] newArray(int i) {
            return new HashEntry[i];
        }
    }

    /**
     * Segments are specialized versions of hash tables.  This
     * subclasses from ReentrantLock opportunistically, just to
     * simplify some locking and avoid separate construction.
     */
    static final class Segment extends ReentrantLock implements Serializable {
        /*
         * Segments maintain a table of entry lists that are ALWAYS
         * kept in a consistent state, so can be read without locking.
         * Next fields of nodes are immutable (final).  All list
         * additions are performed at the front of each bin. This
         * makes it easy to check changes, and also fast to traverse.
         * When nodes would otherwise be changed, new nodes are
         * created to replace them. This works well for hash tables
         * since the bin lists tend to be short. (The average length
         * is less than two for the default load factor threshold.)
         *
         * Read operations can thus proceed without locking, but rely
         * on selected uses of volatiles to ensure that completed
         * write operations performed by other threads are
         * noticed. For most purposes, the "count" field, tracking the
         * number of elements, serves as that volatile variable
         * ensuring visibility.  This is convenient because this field
         * needs to be read in many read operations anyway:
         *
         *   - All (unsynchronized) read operations must first read the
         *     "count" field, and should not look at table entries if
         *     it is 0.
         *
         *   - All (synchronized) write operations should write to
         *     the "count" field after structurally changing any bin.
         *     The operations must not take any action that could even
         *     momentarily cause a concurrent read operation to see
         *     inconsistent data. This is made easier by the nature of
         *     the read operations in Map. For example, no operation
         *     can reveal that the table has grown but the threshold
         *     has not yet been updated, so there are no atomicity
         *     requirements for this with respect to reads.
         *
         * As a guide, all critical volatile reads and writes to the
         * count field are marked in code comments.
         */

        private static final long serialVersionUID = 2249069246763182397L;

        /**
         * The number of elements in this segment's region.
         */
        transient volatile int count;

        /**
         * Number of updates that alter the size of the table. This is
         * used during bulk-read methods to make sure they see a
         * consistent snapshot: If modCounts change during a traversal
         * of segments computing size or checking containsValue, then
         * we might have an inconsistent view of state so (usually)
         * must retry.
         */
        transient int modCount;

        /**
         * The table is rehashed when its size exceeds this threshold.
         * (The value of this field is always <tt>(int)(capacity *
         * loadFactor)</tt>.)
         */
        transient int threshold;

        /**
         * The per-segment table.
         */
        transient volatile HashEntry[] table;

        /**
         * The load factor for the hash table.  Even though this value
         * is same for all segments, it is replicated to avoid needing
         * links to outer object.
         * @serial
         */
        final float loadFactor;

        Segment(int initialCapacity, float lf) {
            loadFactor = lf;
            setTable(HashEntry.newArray(initialCapacity));
        }

        static final  Segment[] newArray(int i) {
            return new Segment[i];
        }

        /**
         * Sets table to new HashEntry array.
         * Call only while holding lock or in constructor.
         */
        void setTable(HashEntry[] newTable) {
            threshold = (int)(newTable.length * loadFactor);
            table = newTable;
        }

        /**
         * Returns properly casted first entry of bin for given hash.
         */
        HashEntry getFirst(int hash) {
            HashEntry[] tab = table;
            return tab[hash & (tab.length - 1)];
        }

        /**
         * Reads value field of an entry under lock. Called if value
         * field ever appears to be null. This is possible only if a
         * compiler happens to reorder a HashEntry initialization with
         * its table assignment, which is legal under memory model
         * but is not known to ever occur.
         */
        Object readValueUnderLock(HashEntry e) {
            lock();
            try {
                return e.value;
            } finally {
                unlock();
            }
        }

        /* Specialized implementations of map methods */

        Object get(Object key, int hash) {
            if (count != 0) { // read-volatile
                HashEntry e = getFirst(hash);
                while (e != null) {
                    if (e.hash == hash && key.equals(e.key)) {
                        Object v = e.value;
                        if (v != null)
                            return v;
                        return readValueUnderLock(e); // recheck
                    }
                    e = e.next;
                }
            }
            return null;
        }

        boolean containsKey(Object key, int hash) {
            if (count != 0) { // read-volatile
                HashEntry e = getFirst(hash);
                while (e != null) {
                    if (e.hash == hash && key.equals(e.key))
                        return true;
                    e = e.next;
                }
            }
            return false;
        }

        boolean containsValue(Object value) {
            if (count != 0) { // read-volatile
                HashEntry[] tab = table;
                int len = tab.length;
                for (int i = 0 ; i < len; i++) {
                    for (HashEntry e = tab[i]; e != null; e = e.next) {
                        Object v = e.value;
                        if (v == null) // recheck
                            v = readValueUnderLock(e);
                        if (value.equals(v))
                            return true;
                    }
                }
            }
            return false;
        }

        boolean replace(Object key, int hash, Object oldValue, Object newValue) {
            lock();
            try {
                HashEntry e = getFirst(hash);
                while (e != null && (e.hash != hash || !key.equals(e.key)))
                    e = e.next;

                boolean replaced = false;
                if (e != null && oldValue.equals(e.value)) {
                    replaced = true;
                    e.value = newValue;
                }
                return replaced;
            } finally {
                unlock();
            }
        }

        Object replace(Object key, int hash, Object newValue) {
            lock();
            try {
                HashEntry e = getFirst(hash);
                while (e != null && (e.hash != hash || !key.equals(e.key)))
                    e = e.next;

                Object oldValue = null;
                if (e != null) {
                    oldValue = e.value;
                    e.value = newValue;
                }
                return oldValue;
            } finally {
                unlock();
            }
        }


        Object put(Object key, int hash, Object value, boolean onlyIfAbsent) {
            lock();
            try {
                int c = count;
                if (c++ > threshold) // ensure capacity
                    rehash();
                HashEntry[] tab = table;
                int index = hash & (tab.length - 1);
                HashEntry first = tab[index];
                HashEntry e = first;
                while (e != null && (e.hash != hash || !key.equals(e.key)))
                    e = e.next;

                Object oldValue;
                if (e != null) {
                    oldValue = e.value;
                    if (!onlyIfAbsent)
                        e.value = value;
                }
                else {
                    oldValue = null;
                    ++modCount;
                    tab[index] = new HashEntry(key, hash, first, value);
                    count = c; // write-volatile
                }
                return oldValue;
            } finally {
                unlock();
            }
        }

        void rehash() {
            HashEntry[] oldTable = table;
            int oldCapacity = oldTable.length;
            if (oldCapacity >= MAXIMUM_CAPACITY)
                return;

            /*
             * Reclassify nodes in each list to new Map.  Because we are
             * using power-of-two expansion, the elements from each bin
             * must either stay at same index, or move with a power of two
             * offset. We eliminate unnecessary node creation by catching
             * cases where old nodes can be reused because their next
             * fields won't change. Statistically, at the default
             * threshold, only about one-sixth of them need cloning when
             * a table doubles. The nodes they replace will be garbage
             * collectable as soon as they are no longer referenced by any
             * reader thread that may be in the midst of traversing table
             * right now.
             */

            HashEntry[] newTable = HashEntry.newArray(oldCapacity<<1);
            threshold = (int)(newTable.length * loadFactor);
            int sizeMask = newTable.length - 1;
            for (int i = 0; i < oldCapacity ; i++) {
                // We need to guarantee that any existing reads of old Map can
                //  proceed. So we cannot yet null out each bin.
                HashEntry e = oldTable[i];

                if (e != null) {
                    HashEntry next = e.next;
                    int idx = e.hash & sizeMask;

                    //  Single node on list
                    if (next == null)
                        newTable[idx] = e;

                    else {
                        // Reuse trailing consecutive sequence at same slot
                        HashEntry lastRun = e;
                        int lastIdx = idx;
                        for (HashEntry last = next;
                             last != null;
                             last = last.next) {
                            int k = last.hash & sizeMask;
                            if (k != lastIdx) {
                                lastIdx = k;
                                lastRun = last;
                            }
                        }
                        newTable[lastIdx] = lastRun;

                        // Clone all remaining nodes
                        for (HashEntry p = e; p != lastRun; p = p.next) {
                            int k = p.hash & sizeMask;
                            HashEntry n = newTable[k];
                            newTable[k] = new HashEntry(p.key, p.hash,
                                                             n, p.value);
                        }
                    }
                }
            }
            table = newTable;
        }

        /**
         * Remove; match on key only if value null, else match both.
         */
        Object remove(Object key, int hash, Object value) {
            lock();
            try {
                int c = count - 1;
                HashEntry[] tab = table;
                int index = hash & (tab.length - 1);
                HashEntry first = tab[index];
                HashEntry e = first;
                while (e != null && (e.hash != hash || !key.equals(e.key)))
                    e = e.next;

                Object oldValue = null;
                if (e != null) {
                    Object v = e.value;
                    if (value == null || value.equals(v)) {
                        oldValue = v;
                        // All entries following removed node can stay
                        // in list, but all preceding ones need to be
                        // cloned.
                        ++modCount;
                        HashEntry newFirst = e.next;
                        for (HashEntry p = first; p != e; p = p.next)
                            newFirst = new HashEntry(p.key, p.hash,
                                                          newFirst, p.value);
                        tab[index] = newFirst;
                        count = c; // write-volatile
                    }
                }
                return oldValue;
            } finally {
                unlock();
            }
        }

        void clear() {
            if (count != 0) {
                lock();
                try {
                    HashEntry[] tab = table;
                    for (int i = 0; i < tab.length ; i++)
                        tab[i] = null;
                    ++modCount;
                    count = 0; // write-volatile
                } finally {
                    unlock();
                }
            }
        }
    }



    /* ---------------- Public operations -------------- */

    /**
     * Creates a new, empty map with the specified initial
     * capacity, load factor and concurrency level.
     *
     * @param initialCapacity the initial capacity. The implementation
     * performs internal sizing to accommodate this many elements.
     * @param loadFactor  the load factor threshold, used to control resizing.
     * Resizing may be performed when the average number of elements per
     * bin exceeds this threshold.
     * @param concurrencyLevel the estimated number of concurrently
     * updating threads. The implementation performs internal sizing
     * to try to accommodate this many threads.
     * @throws IllegalArgumentException if the initial capacity is
     * negative or the load factor or concurrencyLevel are
     * nonpositive.
     */
    public ConcurrentHashMap(int initialCapacity,
                             float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();

        if (concurrencyLevel > MAX_SEGMENTS)
            concurrencyLevel = MAX_SEGMENTS;

        // Find power-of-two sizes best matching arguments
        int sshift = 0;
        int ssize = 1;
        while (ssize < concurrencyLevel) {
            ++sshift;
            ssize <<= 1;
        }
        segmentShift = 32 - sshift;
        segmentMask = ssize - 1;
        this.segments = Segment.newArray(ssize);

        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        int c = initialCapacity / ssize;
        if (c * ssize < initialCapacity)
            ++c;
        int cap = 1;
        while (cap < c)
            cap <<= 1;

        for (int i = 0; i < this.segments.length; ++i)
            this.segments[i] = new Segment(cap, loadFactor);
    }

    /**
     * Creates a new, empty map with the specified initial capacity
     * and load factor and with the default concurrencyLevel (16).
     *
     * @param initialCapacity The implementation performs internal
     * sizing to accommodate this many elements.
     * @param loadFactor  the load factor threshold, used to control resizing.
     * Resizing may be performed when the average number of elements per
     * bin exceeds this threshold.
     * @throws IllegalArgumentException if the initial capacity of
     * elements is negative or the load factor is nonpositive
     *
     * @since 1.6
     */
    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
    }

    /**
     * Creates a new, empty map with the specified initial capacity,
     * and with default load factor (0.75) and concurrencyLevel (16).
     *
     * @param initialCapacity the initial capacity. The implementation
     * performs internal sizing to accommodate this many elements.
     * @throws IllegalArgumentException if the initial capacity of
     * elements is negative.
     */
    public ConcurrentHashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
    }

    /**
     * Creates a new, empty map with a default initial capacity (16),
     * load factor (0.75) and concurrencyLevel (16).
     */
    public ConcurrentHashMap() {
        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
    }

    /**
     * Creates a new map with the same mappings as the given map.
     * The map is created with a capacity of 1.5 times the number
     * of mappings in the given map or 16 (whichever is greater),
     * and a default load factor (0.75) and concurrencyLevel (16).
     *
     * @param m the map
     */
    public ConcurrentHashMap(Map m) {
        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
                      DEFAULT_INITIAL_CAPACITY),
             DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
        putAll(m);
    }

    /**
     * Returns <tt>true</tt> if this map contains no key-value mappings.
     *
     * @return <tt>true</tt> if this map contains no key-value mappings
     */
    public boolean isEmpty() {
        final Segment[] segments = this.segments;
        /*
         * We keep track of per-segment modCounts to avoid ABA
         * problems in which an element in one segment was added and
         * in another removed during traversal, in which case the
         * table was never actually empty at any point. Note the
         * similar use of modCounts in the size() and containsValue()
         * methods, which are the only other methods also susceptible
         * to ABA problems.
         */
        int[] mc = new int[segments.length];
        int mcsum = 0;
        for (int i = 0; i < segments.length; ++i) {
            if (segments[i].count != 0)
                return false;
            else
                mcsum += mc[i] = segments[i].modCount;
        }
        // If mcsum happens to be zero, then we know we got a snapshot
        // before any modifications at all were made.  This is
        // probably common enough to bother tracking.
        if (mcsum != 0) {
            for (int i = 0; i < segments.length; ++i) {
                if (segments[i].count != 0 ||
                    mc[i] != segments[i].modCount)
                    return false;
            }
        }
        return true;
    }

    /**
     * Returns the number of key-value mappings in this map.  If the
     * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
     * <tt>Integer.MAX_VALUE</tt>.
     *
     * @return the number of key-value mappings in this map
     */
    public int size() {
        final Segment[] segments = this.segments;
        long sum = 0;
        long check = 0;
        int[] mc = new int[segments.length];
        // Try a few times to get accurate count. On failure due to
        // continuous async changes in table, resort to locking.
        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
            check = 0;
            sum = 0;
            int mcsum = 0;
            for (int i = 0; i < segments.length; ++i) {
                sum += segments[i].count;
                mcsum += mc[i] = segments[i].modCount;
            }
            if (mcsum != 0) {
                for (int i = 0; i < segments.length; ++i) {
                    check += segments[i].count;
                    if (mc[i] != segments[i].modCount) {
                        check = -1; // force retry
                        break;
                    }
                }
            }
            if (check == sum)
                break;
        }
        if (check != sum) { // Resort to locking all segments
            sum = 0;
            for (int i = 0; i < segments.length; ++i)
                segments[i].lock();
            for (int i = 0; i < segments.length; ++i)
                sum += segments[i].count;
            for (int i = 0; i < segments.length; ++i)
                segments[i].unlock();
        }
        if (sum > Integer.MAX_VALUE)
            return Integer.MAX_VALUE;
        else
            return (int)sum;
    }

    /**
     * Returns the value to which this map maps the specified key, or
     * <tt>null</tt> if the map contains no mapping for the key.
     *
     * @param key key whose associated value is to be returned
     * @return the value to which this map maps the specified key, or
     *         <tt>null</tt> if the map contains no mapping for the key
     * @throws NullPointerException if the specified key is null
     */
    public Object get(Object key) {
        int hash = hash(key); // throws NullPointerException if key null
        return segmentFor(hash).get(key, hash);
    }

    /**
     * Tests if the specified object is a key in this table.
     *
     * @param  key   possible key
     * @return <tt>true</tt> if and only if the specified object
     *         is a key in this table, as determined by the
     *         <tt>equals</tt> method; <tt>false</tt> otherwise.
     * @throws NullPointerException if the specified key is null
     */
    public boolean containsKey(Object key) {
        int hash = hash(key); // throws NullPointerException if key null
        return segmentFor(hash).containsKey(key, hash);
    }

    /**
     * Returns <tt>true</tt> if this map maps one or more keys to the
     * specified value. Note: This method requires a full internal
     * traversal of the hash table, and so is much slower than
     * method <tt>containsKey</tt>.
     *
     * @param value value whose presence in this map is to be tested
     * @return <tt>true</tt> if this map maps one or more keys to the
     *         specified value
     * @throws NullPointerException if the specified value is null
     */
    public boolean containsValue(Object value) {
        if (value == null)
            throw new NullPointerException();

        // See explanation of modCount use above

        final Segment[] segments = this.segments;
        int[] mc = new int[segments.length];

        // Try a few times without locking
        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
            int sum = 0;
            int mcsum = 0;
            for (int i = 0; i < segments.length; ++i) {
                int c = segments[i].count;
                mcsum += mc[i] = segments[i].modCount;
                if (segments[i].containsValue(value))
                    return true;
            }
            boolean cleanSweep = true;
            if (mcsum != 0) {
                for (int i = 0; i < segments.length; ++i) {
                    int c = segments[i].count;
                    if (mc[i] != segments[i].modCount) {
                        cleanSweep = false;
                        break;
                    }
                }
            }
            if (cleanSweep)
                return false;
        }
        // Resort to locking all segments
        for (int i = 0; i < segments.length; ++i)
            segments[i].lock();
        boolean found = false;
        try {
            for (int i = 0; i < segments.length; ++i) {
                if (segments[i].containsValue(value)) {
                    found = true;
                    break;
                }
            }
        } finally {
            for (int i = 0; i < segments.length; ++i)
                segments[i].unlock();
        }
        return found;
    }

    /**
     * Legacy method testing if some key maps into the specified value
     * in this table.  This method is identical in functionality to
     * {@link #containsValue}, and exists solely to ensure
     * full compatibility with class {@link java.util.Hashtable},
     * which supported this method prior to introduction of the
     * Java Collections framework.

     * @param  value a value to search for
     * @return <tt>true</tt> if and only if some key maps to the
     *         <tt>value</tt> argument in this table as
     *         determined by the <tt>equals</tt> method;
     *         <tt>false</tt> otherwise
     * @throws NullPointerException if the specified value is null
     */
    public boolean contains(Object value) {
        return containsValue(value);
    }

    /**
     * Maps the specified key to the specified value in this table.
     * Neither the key nor the value can be null.
     *
     * <p> The value can be retrieved by calling the <tt>get</tt> method
     * with a key that is equal to the original key.
     *
     * @param key key with which the specified value is to be associated
     * @param value value to be associated with the specified key
     * @return the previous value associated with <tt>key</tt>, or
     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
     * @throws NullPointerException if the specified key or value is null
     */
    public Object put(Object key, Object value) {
        if (value == null)
            throw new NullPointerException();
        int hash = hash(key);
        return segmentFor(hash).put(key, hash, value, false);
    }

    /**
     * {@inheritDoc}
     *
     * @return the previous value associated with the specified key,
     *         or <tt>null</tt> if there was no mapping for the key
     * @throws NullPointerException if the specified key or value is null
     */
    public Object putIfAbsent(Object key, Object value) {
        if (value == null)
            throw new NullPointerException();
        int hash = hash(key);
        return segmentFor(hash).put(key, hash, value, true);
    }

    /**
     * Copies all of the mappings from the specified map to this one.
     * These mappings replace any mappings that this map had for any of the
     * keys currently in the specified map.
     *
     * @param m mappings to be stored in this map
     */
    public void putAll(Map m) {
        for (Iterator it = m.entrySet().iterator(); it.hasNext(); ) {
            Entry e = (Entry)it.next();
            put(e.getKey(), e.getValue());
        }
    }

    /**
     * Removes the key (and its corresponding value) from this map.
     * This method does nothing if the key is not in the map.
     *
     * @param  key the key that needs to be removed
     * @return the previous value associated with <tt>key</tt>, or
     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
     * @throws NullPointerException if the specified key is null
     */
    public Object remove(Object key) {
        int hash = hash(key);
        return segmentFor(hash).remove(key, hash, null);
    }

    /**
     * {@inheritDoc}
     *
     * @throws NullPointerException if the specified key is null
     */
    public boolean remove(Object key, Object value) {
        if (value == null)
            return false;
        int hash = hash(key);
        return segmentFor(hash).remove(key, hash, value) != null;
    }

    /**
     * {@inheritDoc}
     *
     * @throws NullPointerException if any of the arguments are null
     */
    public boolean replace(Object key, Object oldValue, Object newValue) {
        if (oldValue == null || newValue == null)
            throw new NullPointerException();
        int hash = hash(key);
        return segmentFor(hash).replace(key, hash, oldValue, newValue);
    }

    /**
     * {@inheritDoc}
     *
     * @return the previous value associated with the specified key,
     *         or <tt>null</tt> if there was no mapping for the key
     * @throws NullPointerException if the specified key or value is null
     */
    public Object replace(Object key, Object value) {
        if (value == null)
            throw new NullPointerException();
        int hash = hash(key);
        return segmentFor(hash).replace(key, hash, value);
    }

    /**
     * Removes all of the mappings from this map.
     */
    public void clear() {
        for (int i = 0; i < segments.length; ++i)
            segments[i].clear();
    }

    /**
     * Returns a {@link Set} view of the keys contained in this map.
     * The set is backed by the map, so changes to the map are
     * reflected in the set, and vice-versa.  The set supports element
     * removal, which removes the corresponding mapping from this map,
     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
     * operations.  It does not support the <tt>add</tt> or
     * <tt>addAll</tt> operations.
     *
     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
     * that will never throw {@link ConcurrentModificationException},
     * and guarantees to traverse elements as they existed upon
     * construction of the iterator, and may (but is not guaranteed to)
     * reflect any modifications subsequent to construction.
     */
    public Set keySet() {
        Set ks = keySet;
        return (ks != null) ? ks : (keySet = new KeySet());
    }

    /**
     * Returns a {@link Collection} view of the values contained in this map.
     * The collection is backed by the map, so changes to the map are
     * reflected in the collection, and vice-versa.  The collection
     * supports element removal, which removes the corresponding
     * mapping from this map, via the <tt>Iterator.remove</tt>,
     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
     * support the <tt>add</tt> or <tt>addAll</tt> operations.
     *
     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
     * that will never throw {@link ConcurrentModificationException},
     * and guarantees to traverse elements as they existed upon
     * construction of the iterator, and may (but is not guaranteed to)
     * reflect any modifications subsequent to construction.
     */
    public Collection values() {
        Collection vs = values;
        return (vs != null) ? vs : (values = new Values());
    }

    /**
     * Returns a {@link Set} view of the mappings contained in this map.
     * The set is backed by the map, so changes to the map are
     * reflected in the set, and vice-versa.  The set supports element
     * removal, which removes the corresponding mapping from the map,
     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
     * operations.  It does not support the <tt>add</tt> or
     * <tt>addAll</tt> operations.
     *
     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
     * that will never throw {@link ConcurrentModificationException},
     * and guarantees to traverse elements as they existed upon
     * construction of the iterator, and may (but is not guaranteed to)
     * reflect any modifications subsequent to construction.
     */
    public Set entrySet() {
        Set es = entrySet;
        return (es != null) ? es : (entrySet = new EntrySet());
    }

    /**
     * Returns an enumeration of the keys in this table.
     *
     * @return an enumeration of the keys in this table
     * @see #keySet
     */
    public Enumeration keys() {
        return new KeyIterator();
    }

    /**
     * Returns an enumeration of the values in this table.
     *
     * @return an enumeration of the values in this table
     * @see #values
     */
    public Enumeration elements() {
        return new ValueIterator();
    }

    /* ---------------- Iterator Support -------------- */

    abstract class HashIterator {
        int nextSegmentIndex;
        int nextTableIndex;
        HashEntry[] currentTable;
        HashEntry nextEntry;
        HashEntry lastReturned;

        HashIterator() {
            nextSegmentIndex = segments.length - 1;
            nextTableIndex = -1;
            advance();
        }

        public boolean hasMoreElements() { return hasNext(); }

        final void advance() {
            if (nextEntry != null && (nextEntry = nextEntry.next) != null)
                return;

            while (nextTableIndex >= 0) {
                if ( (nextEntry = currentTable[nextTableIndex--]) != null)
                    return;
            }

            while (nextSegmentIndex >= 0) {
                Segment seg = segments[nextSegmentIndex--];
                if (seg.count != 0) {
                    currentTable = seg.table;
                    for (int j = currentTable.length - 1; j >= 0; --j) {
                        if ( (nextEntry = currentTable[j]) != null) {
                            nextTableIndex = j - 1;
                            return;
                        }
                    }
                }
            }
        }

        public boolean hasNext() { return nextEntry != null; }

        HashEntry nextEntry() {
            if (nextEntry == null)
                throw new NoSuchElementException();
            lastReturned = nextEntry;
            advance();
            return lastReturned;
        }

        public void remove() {
            if (lastReturned == null)
                throw new IllegalStateException();
            ConcurrentHashMap.this.remove(lastReturned.key);
            lastReturned = null;
        }
    }

    final class KeyIterator extends HashIterator implements Iterator, Enumeration {
        public Object next() { return super.nextEntry().key; }
        public Object nextElement() { return super.nextEntry().key; }
    }

    final class ValueIterator extends HashIterator implements Iterator, Enumeration {
        public Object next() { return super.nextEntry().value; }
        public Object nextElement() { return super.nextEntry().value; }
    }



    /**
     * Entry iterator. Exported Entry objects must write-through
     * changes in setValue, even if the nodes have been cloned. So we
     * cannot return internal HashEntry objects. Instead, the iterator
     * itself acts as a forwarding pseudo-entry.
     */
    final class EntryIterator extends HashIterator implements Map.Entry, Iterator {
        public Object next() {
            nextEntry();
            return this;
        }

        public Object getKey() {
            if (lastReturned == null)
                throw new IllegalStateException("Entry was removed");
            return lastReturned.key;
        }

        public Object getValue() {
            if (lastReturned == null)
                throw new IllegalStateException("Entry was removed");
            return ConcurrentHashMap.this.get(lastReturned.key);
        }

        public Object setValue(Object value) {
            if (lastReturned == null)
                throw new IllegalStateException("Entry was removed");
            return ConcurrentHashMap.this.put(lastReturned.key, value);
        }

        public boolean equals(Object o) {
            // If not acting as entry, just use default.
            if (lastReturned == null)
                return super.equals(o);
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry e = (Map.Entry)o;
            return eq(getKey(), e.getKey()) && eq(getValue(), e.getValue());
        }

        public int hashCode() {
            // If not acting as entry, just use default.
            if (lastReturned == null)
                return super.hashCode();

            Object k = getKey();
            Object v = getValue();
            return ((k == null) ? 0 : k.hashCode()) ^
                   ((v == null) ? 0 : v.hashCode());
        }

        public String toString() {
            // If not acting as entry, just use default.
            if (lastReturned == null)
                return super.toString();
            else
                return getKey() + "=" + getValue();
        }

        boolean eq(Object o1, Object o2) {
            return (o1 == null ? o2 == null : o1.equals(o2));
        }

    }

    final class KeySet extends AbstractSet {
        public Iterator iterator() {
            return new KeyIterator();
        }
        public int size() {
            return ConcurrentHashMap.this.size();
        }
        public boolean contains(Object o) {
            return ConcurrentHashMap.this.containsKey(o);
        }
        public boolean remove(Object o) {
            return ConcurrentHashMap.this.remove(o) != null;
        }
        public void clear() {
            ConcurrentHashMap.this.clear();
        }
        public Object[] toArray() {
            Collection c = new ArrayList();
            for (Iterator i = iterator(); i.hasNext(); )
                c.add(i.next());
            return c.toArray();
        }
        public Object[] toArray(Object[] a) {
            Collection c = new ArrayList();
            for (Iterator i = iterator(); i.hasNext(); )
                c.add(i.next());
            return c.toArray(a);
        }
    }

    final class Values extends AbstractCollection {
        public Iterator iterator() {
            return new ValueIterator();
        }
        public int size() {
            return ConcurrentHashMap.this.size();
        }
        public boolean contains(Object o) {
            return ConcurrentHashMap.this.containsValue(o);
        }
        public void clear() {
            ConcurrentHashMap.this.clear();
        }
        public Object[] toArray() {
            Collection c = new ArrayList();
            for (Iterator i = iterator(); i.hasNext(); )
                c.add(i.next());
            return c.toArray();
        }
        public Object[] toArray(Object[] a) {
            Collection c = new ArrayList();
            for (Iterator i = iterator(); i.hasNext(); )
                c.add(i.next());
            return c.toArray(a);
        }
    }

    final class EntrySet extends AbstractSet {
        public Iterator iterator() {
            return new EntryIterator();
        }
        public boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry e = (Map.Entry)o;
            Object v = ConcurrentHashMap.this.get(e.getKey());
            return v != null && v.equals(e.getValue());
        }
        public boolean remove(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry e = (Map.Entry)o;
            return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
        }
        public int size() {
            return ConcurrentHashMap.this.size();
        }
        public void clear() {
            ConcurrentHashMap.this.clear();
        }
        public Object[] toArray() {
            // Since we don't ordinarily have distinct Entry objects, we
            // must pack elements using exportable SimpleEntry
            Collection c = new ArrayList(size());
            for (Iterator i = iterator(); i.hasNext(); )
                c.add(new SimpleEntry((Entry)i.next()));
            return c.toArray();
        }
        public Object[] toArray(Object[] a) {
            Collection c = new ArrayList(size());
            for (Iterator i = iterator(); i.hasNext(); )
                c.add(new SimpleEntry((Entry)i.next()));
            return c.toArray(a);
        }

    }

    /* ---------------- Serialization Support -------------- */

    /**
     * Save the state of the <tt>ConcurrentHashMap</tt> instance to a
     * stream (i.e., serialize it).
     * @param s the stream
     * @serialData
     * the key (Object) and value (Object)
     * for each key-value mapping, followed by a null pair.
     * The key-value mappings are emitted in no particular order.
     */
    private void writeObject(java.io.ObjectOutputStream s) throws IOException  {
        s.defaultWriteObject();

        for (int k = 0; k < segments.length; ++k) {
            Segment seg = segments[k];
            seg.lock();
            try {
                HashEntry[] tab = seg.table;
                for (int i = 0; i < tab.length; ++i) {
                    for (HashEntry e = tab[i]; e != null; e = e.next) {
                        s.writeObject(e.key);
                        s.writeObject(e.value);
                    }
                }
            } finally {
                seg.unlock();
            }
        }
        s.writeObject(null);
        s.writeObject(null);
    }

    /**
     * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a
     * stream (i.e., deserialize it).
     * @param s the stream
     */
    private void readObject(java.io.ObjectInputStream s)
        throws IOException, ClassNotFoundException  {
        s.defaultReadObject();

        // Initialize each segment to be minimally sized, and let grow.
        for (int i = 0; i < segments.length; ++i) {
            segments[i].setTable(new HashEntry[1]);
        }

        // Read the keys and values, and put the mappings in the table
        for (;;) {
            Object key = (Object) s.readObject();
            Object value = (Object) s.readObject();
            if (key == null)
                break;
            put(key, value);
        }
    }
}
TOP

Related Classes of edu.emory.mathcs.backport.java.util.concurrent.ConcurrentHashMap$EntrySet

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.