Package net.sf.jabref.bst

Source Code of net.sf.jabref.bst.VM$StackFunction

package net.sf.jabref.bst;

import java.io.File;
import java.io.IOException;
import java.io.PrintStream;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.Iterator;
import java.util.ListIterator;
import java.util.Map;
import java.util.Stack;
import java.util.Vector;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

import net.sf.jabref.AuthorList;
import net.sf.jabref.BibtexDatabase;
import net.sf.jabref.BibtexEntry;

import org.antlr.runtime.ANTLRFileStream;
import org.antlr.runtime.ANTLRStringStream;
import org.antlr.runtime.CharStream;
import org.antlr.runtime.CommonTokenStream;
import org.antlr.runtime.RecognitionException;
import org.antlr.runtime.tree.CommonTree;
import org.antlr.runtime.tree.Tree;

/**
*
* A Bibtex Virtual machine that can execute .bst files.
*
* Documentation can be found in the original bibtex distribution:
*
* http://texcatalogue.sarovar.org/entries/bibtex.html#Download
*
* @author $Author: coezbek $
* @version $Revision: 2488 $ ($Date: 2007-11-14 01:25:31 +0100 (Wed, 14 Nov 2007) $)
*
*/

public class VM implements Warn {

  PrintStream out = System.out;

  public class Identifier {
    public String name;

    public Identifier(String name) {
      this.name = name;
    }

    public String getName() {
      return name;
    }
  }

  public class Variable {
    public String name;

    public Variable(String name) {
      this.name = name;
    }

    public String getName() {
      return name;
    }
  }

  public interface BstFunction {
    public void execute(BstEntry context);
  }

  public static final Integer FALSE = new Integer(0);

  public static final Integer TRUE = new Integer(1);

  private HashMap<String,BstFunction> buildInFunctions;

  public File file;

  public VM(File f) throws RecognitionException, IOException {
    this(new ANTLRFileStream(f.getPath()));
    this.file = f;
  }

  public VM(String s) throws RecognitionException {
    this(new ANTLRStringStream(s));
  }

  public static CommonTree charStream2CommonTree(CharStream bst) throws RecognitionException {
    BstLexer lex = new BstLexer(bst);
    CommonTokenStream tokens = new CommonTokenStream(lex);
    BstParser parser = new BstParser(tokens);
    BstParser.program_return r = parser.program();
    return (CommonTree) r.getTree();
  }

  public VM(CharStream bst) throws RecognitionException {
    this(charStream2CommonTree(bst));
  }

  public VM(CommonTree tree) {
    this.tree = tree;

    this.buildInFunctions = new HashMap<String, BstFunction>(37);

    buildInFunctions.put(">", new BstFunction() {
      /**
       * Pops the top two (integer) literals, compares them, and pushes
       * the integer 1 if the second is greater than the first, 0
       * otherwise.
       */
      public void execute(BstEntry context) {
        if (stack.size() < 2) {
          throw new VMException("Not enough operands on stack for operation >");
        }
        Object o2 = stack.pop();
        Object o1 = stack.pop();

        if (!(o1 instanceof Integer && o2 instanceof Integer)) {
          throw new VMException("Can only compare two integers with >");
        }

        if (o1 == o2) {
          stack.push(VM.FALSE);
          return;
        }

        stack.push(((Integer) o1).compareTo((Integer) o2) > 0 ? VM.TRUE : VM.FALSE);
      }
    });

    buildInFunctions.put("<", new BstFunction() {
      /** Analogous. */
      public void execute(BstEntry context) {
        if (stack.size() < 2) {
          throw new VMException("Not enough operands on stack for operation <");
        }
        Object o2 = stack.pop();
        Object o1 = stack.pop();

        if (!(o1 instanceof Integer && o2 instanceof Integer)) {
          throw new VMException("Can only compare two integers with <");
        }

        if (o1 == o2) {
          stack.push(VM.FALSE);
          return;
        }

        stack.push(((Integer) o1).compareTo((Integer) o2) < 0 ? VM.TRUE : VM.FALSE);

      }
    });

    buildInFunctions.put("=", new BstFunction() {
      /**
       * Pops the top two (both integer or both string) literals, compares
       * them, and pushes the integer 1 if they're equal, 0 otherwise.
       */
      public void execute(BstEntry context) {
        if (stack.size() < 2) {
          throw new VMException("Not enough operands on stack for operation =");
        }
        Object o1 = stack.pop();
        Object o2 = stack.pop();

        if (o1 == null ^ o2 == null) {
          stack.push(VM.FALSE);
          return;
        }

        if (o1 == o2) {
          stack.push(VM.TRUE);
          return;
        }

        stack.push(o1.equals(o2) ? VM.TRUE : VM.FALSE);
      }
    });

    buildInFunctions.put("+", new BstFunction() {
      /** Pops the top two (integer) literals and pushes their sum. */
      public void execute(BstEntry context) {
        if (stack.size() < 2) {
          throw new VMException("Not enough operands on stack for operation +");
        }
        Object o2 = stack.pop();
        Object o1 = stack.pop();

        if (!(o1 instanceof Integer && o2 instanceof Integer)) {
          throw new VMException("Can only compare two integers with +");
        }

        stack.push(new Integer(((Integer) o1).intValue() + ((Integer) o2).intValue()));
      }
    });

    buildInFunctions.put("-", new BstFunction() {
      /**
       * Pops the top two (integer) literals and pushes their difference
       * (the first subtracted from the second).
       */
      public void execute(BstEntry context) {
        if (stack.size() < 2) {
          throw new VMException("Not enough operands on stack for operation -");
        }
        Object o2 = stack.pop();
        Object o1 = stack.pop();

        if (!(o1 instanceof Integer && o2 instanceof Integer)) {
          throw new VMException("Can only subtract two integers with -");
        }

        stack.push(new Integer(((Integer) o1).intValue() - ((Integer) o2).intValue()));
      }
    });

    buildInFunctions.put("*", new BstFunction() {
      /**
       * Pops the top two (string) literals, concatenates them (in reverse
       * order, that is, the order in which pushed), and pushes the
       * resulting string.
       */
      public void execute(BstEntry context) {
        if (stack.size() < 2) {
          throw new VMException("Not enough operands on stack for operation *");
        }
        Object o2 = stack.pop();
        Object o1 = stack.pop();

        if (!(o1 instanceof String && o2 instanceof String)) {
          throw new VMException("Can only concatenate two String with *");
        }

        stack.push(((String) o1) + ((String) o2));
      }
    });

    buildInFunctions.put(":=", new BstFunction() {
      /**
       * Pops the top two literals and assigns to the first (which must be
       * a global or entry variable) the value of the second.
       */
      public void execute(BstEntry context) {
        if (stack.size() < 2) {
          throw new VMException("Invalid call to operation :=");
        }
        Object o1 = stack.pop();
        Object o2 = stack.pop();
        assign(context, o1, o2);

      }
    });

    buildInFunctions.put("add.period$", new BstFunction() {

      Pattern p = Pattern.compile("([^\\.\\?\\!\\}\\s])(\\}|\\s)*$");

      /**
       * Pops the top (string) literal, adds a `.' to it if the last non
       * '}' character isn't a `.', `?', or `!', and pushes this resulting
       * string.
       */
      public void execute(BstEntry context) {
        if (stack.size() < 1) {
          throw new VMException("Not enough operands on stack for operation add.period$");
        }
        Object o1 = stack.pop();

        if (!(o1 instanceof String)) {
          throw new VMException("Can only add a period to a string for add.period$");
        }

        String s = (String) o1;
        Matcher m = p.matcher(s);

        if (m.find()) {
          StringBuffer sb = new StringBuffer();
          m.appendReplacement(sb, m.group(1));
          sb.append('.');
          String group2 = m.group(2);
          if (group2 != null)
            sb.append(m.group(2));
          stack.push(sb.toString());
        } else {
          stack.push(s);
        }
      }
    });

    buildInFunctions.put("call.type$", new BstFunction() {
      /**
       * Executes the function whose name is the entry type of an entry.
       * For example if an entry is of type book, this function executes
       * the book function. When given as an argument to the ITERATE
       * command, call.type$ actually produces the output for the entries.
       * For an entry with an unknown type, it executes the function
       * default.type. Thus you should define (before the READ command)
       * one function for each standard entry type as well as a
       * default.type function.
       */
      public void execute(BstEntry context) {

        if (context == null) {
          throw new VMException(
            "Call.type$ can only be called from within a context (ITERATE or REVERSE).");
        }
        VM.this.execute(context.entry.getType().getName().toLowerCase(), context);
      }
    });

    buildInFunctions.put("change.case$", new ChangeCaseFunction(this));

    buildInFunctions.put("chr.to.int$", new BstFunction() {
      /**
       * Pops the top (string) literal, makes sure it's a single
       * character, converts it to the corresponding ASCII integer, and
       * pushes this integer.
       */
      public void execute(BstEntry context) {
        if (stack.size() < 1) {
          throw new VMException("Not enough operands on stack for operation chr.to.int$");
        }
        Object o1 = stack.pop();

        if (!(o1 instanceof String && ((String) o1).length() == 1)) {
          throw new VMException("Can only perform chr.to.int$ on string with length 1");
        }

        String s = (String) o1;

        stack.push(new Integer(s.charAt(0)));
      }
    });

    buildInFunctions.put("cite$", new BstFunction() {
      /**
       * Pushes the string that was the \cite-command argument for this
       * entry.
       */
      public void execute(BstEntry context) {
        stack.push(context.entry.getCiteKey());
      }
    });

    buildInFunctions.put("duplicate$", new BstFunction() {
      /**
       * Pops the top literal from the stack and pushes two copies of it.
       */
      public void execute(BstEntry context) {
        if (stack.size() < 1) {
          throw new VMException("Not enough operands on stack for operation duplicate$");
        }
        Object o1 = stack.pop();

        stack.push(o1);
        stack.push(o1);
      }
    });

    buildInFunctions.put("empty$", new BstFunction() {
      /**
       * Pops the top literal and pushes the integer 1 if it's a missing
       * field or a string having no non-white-space characters, 0
       * otherwise.
       */
      public void execute(BstEntry context) {
        if (stack.size() < 1) {
          throw new VMException("Not enough operands on stack for operation empty$");
        }
        Object o1 = stack.pop();

        if (o1 == null) {
          stack.push(VM.TRUE);
          return;
        }

        if (!(o1 instanceof String)) {
          throw new VMException("Operand does not match function empty$");
        }

        String s = (String) o1;

        stack.push(s.trim().equals("") ? VM.TRUE : VM.FALSE);
      }
    });

    buildInFunctions.put("format.name$", new FormatNameFunction(this));

    buildInFunctions.put("if$", new BstFunction() {
      /**
       * Pops the top three literals (they are two function literals and
       * an integer literal, in that order); if the integer is greater
       * than 0, it executes the second literal, else it executes the
       * first.
       */
      public void execute(BstEntry context) {
        if (stack.size() < 3) {
          throw new VMException("Not enough operands on stack for operation =");
        }
        Object f1 = stack.pop();
        Object f2 = stack.pop();
        Object i = stack.pop();

        if (!(f1 instanceof Identifier || f1 instanceof Tree)
          && (f2 instanceof Identifier || f2 instanceof Tree) && (i instanceof Integer)) {
          throw new VMException("Expecting two functions and an integer for if$.");
        }

        Object toExe;
        if (((Integer) i).intValue() > 0) {
          toExe = f2;
        } else {
          toExe = f1;
        }
        VM.this.executeInContext(toExe, context);
      }
    });

    buildInFunctions.put("int.to.chr$", new BstFunction() {
      /**
       * Pops the top (integer) literal, interpreted as the ASCII integer
       * value of a single character, converts it to the corresponding
       * single-character string, and pushes this string.
       */
      public void execute(BstEntry context) {
        if (stack.size() < 1) {
          throw new VMException("Not enough operands on stack for operation int.to.chr$");
        }
        Object o1 = stack.pop();

        if (!(o1 instanceof Integer)) {
          throw new VMException("Can only perform operation int.to.chr$ on an Integer");
        }

        Integer i = (Integer) o1;

        stack.push(String.valueOf((char) i.intValue()));
      }
    });

    buildInFunctions.put("int.to.str$", new BstFunction() {
      /**
       * Pops the top (integer) literal, converts it to its (unique)
       * string equivalent, and pushes this string.
       */
      public void execute(BstEntry context) {
        if (stack.size() < 1) {
          throw new VMException("Not enough operands on stack for operation int.to.str$");
        }
        Object o1 = stack.pop();

        if (!(o1 instanceof Integer)) {
          throw new VMException(
            "Can only transform an integer to an string using int.to.str$");
        }

        stack.push(((Integer) o1).toString());
      }
    });

    buildInFunctions.put("missing$", new BstFunction() {
      /**
       * Pops the top literal and pushes the integer 1 if it's a missing
       * field, 0 otherwise.
       */
      public void execute(BstEntry context) {
        if (stack.size() < 1) {
          throw new VMException("Not enough operands on stack for operation missing$");
        }
        Object o1 = stack.pop();

        if (o1 == null) {
          stack.push(VM.TRUE);
          return;
        }

        if (!(o1 instanceof String)) {
          warn("Not a string or missing field in operation missing$");
          stack.push(VM.TRUE);
          return;
        }

        stack.push(VM.FALSE);
      }
    });

    buildInFunctions.put("newline$", new BstFunction() {
      /**
       * Writes onto the bbl file what's accumulated in the output buffer.
       * It writes a blank line if and only if the output buffer is empty.
       * Since write$ does reasonable line breaking, you should use this
       * function only when you want a blank line or an explicit line
       * break.
       */
      public void execute(BstEntry context) {
        VM.this.bbl.append('\n');
      }
    });

    buildInFunctions.put("num.names$", new BstFunction() {
      /**
       * Pops the top (string) literal and pushes the number of names the
       * string represents one plus the number of occurrences of the
       * substring "and" (ignoring case differences) surrounded by
       * non-null white-space at the top brace level.
       */
      public void execute(BstEntry context) {
        if (stack.size() < 1) {
          throw new VMException("Not enough operands on stack for operation num.names$");
        }
        Object o1 = stack.pop();

        if (!(o1 instanceof String)) {
          throw new VMException("Need a string at the top of the stack for num.names$");
        }
        String s = (String) o1;

        stack.push(new Integer(AuthorList.getAuthorList(s).size()));
      }
    });

    buildInFunctions.put("pop$", new BstFunction() {
      /**
       * Pops the top of the stack but doesn't print it; this gets rid of
       * an unwanted stack literal.
       */
      public void execute(BstEntry context) {
        stack.pop();
      }
    });

    buildInFunctions.put("preamble$", new BstFunction() {
      /**
       * The |built_in| function {\.{preamble\$}} pushes onto the stack
       * the concatenation of all the \.{preamble} strings read from the
       * database files. (or the empty string if there where none)
       *
       * @PREAMBLE strings read from the database files.
       */
      public void execute(BstEntry context) {
        if (preamble != null) {
          stack.push(preamble);
        } else {
          stack.push("");
        }

      }
    });

    /**
     * Pops the top (string) literal, removes nonalphanumeric characters
     * except for white-space characters and hyphens and ties (these all get
     * converted to a space), removes certain alphabetic characters
     * contained in the control sequences associated with a \special
     * character", and pushes the resulting string.
     */
    buildInFunctions.put("purify$", new PurifyFunction(this));

    buildInFunctions.put("quote$", new BstFunction() {
      /**
       * Pushes the string consisting of the double-quote character.
       */
      public void execute(BstEntry context) {
        stack.push("\"");
      }
    });

    buildInFunctions.put("skip$", new BstFunction() {
      /**
       * Is a no-op.
       */
      public void execute(BstEntry context) {
        // Nothing to do! Yeah!
      }
    });

    buildInFunctions.put("stack$", new BstFunction() {
      /**
       * Pops and prints the whole stack; it's meant to be used for style
       * designers while debugging.
       */
      public void execute(BstEntry context) {
        while (!stack.empty()) {
          System.out.println(stack.pop());
        }
      }
    });

    buildInFunctions.put("substring$", new BstFunction() {
      /**
       * Pops the top three literals (they are the two integers literals
       * len and start, and a string literal, in that order). It pushes
       * the substring of the (at most) len consecutive characters
       * starting at the startth character (assuming 1-based indexing) if
       * start is positive, and ending at the start-th character
       * (including) from the end if start is negative (where the first
       * character from the end is the last character).
       */
      public void execute(BstEntry context) {
        if (stack.size() < 3) {
          throw new VMException("Not enough operands on stack for operation substring$");
        }
        Object o1 = stack.pop();
        Object o2 = stack.pop();
        Object o3 = stack.pop();

        if (!((o1 instanceof Integer) && (o2 instanceof Integer) && (o3 instanceof String))) {
          throw new VMException("Expecting two integers and a string for substring$");
        }

        Integer len = (Integer) o1;
        Integer start = (Integer) o2;

        int lenI = len.intValue();
        int startI = start.intValue();

        if (lenI > Integer.MAX_VALUE / 2)
          lenI = Integer.MAX_VALUE / 2;

        if (startI > Integer.MAX_VALUE / 2)
          startI = Integer.MAX_VALUE / 2;

        if (startI < Integer.MIN_VALUE / 2)
          startI = -Integer.MIN_VALUE / 2;

        String s = (String) o3;

        if (startI < 0) {
          startI += s.length() + 1;
          startI = Math.max(1, startI + 1 - lenI);
        }
        stack.push(s.substring(startI - 1, Math.min(startI - 1 + lenI, s.length())));
      }
    });

    buildInFunctions.put("swap$", new BstFunction() {
      /**
       * Swaps the top two literals on the stack. text.length$ Pops the
       * top (string) literal, and pushes the number of text char- acters
       * it contains, where an accented character (more precisely, a
       * \special character", defined in Section 4) counts as a single
       * text character, even if it's missing its matching right brace,
       * and where braces don't count as text characters.
       */
      public void execute(BstEntry context) {
        if (stack.size() < 2) {
          throw new VMException("Not enough operands on stack for operation swap$");
        }
        Object f1 = stack.pop();
        Object f2 = stack.pop();

        stack.push(f1);
        stack.push(f2);
      }
    });

    buildInFunctions.put("text.length$", new BstFunction() {
      /**
       * text.length$ Pops the top (string) literal, and pushes the number
       * of text characters it contains, where an accented character (more
       * precisely, a "special character", defined in Section 4) counts as
       * a single text character, even if it's missing its matching right
       * brace, and where braces don't count as text characters.
       *
       * From BibTeXing: For the purposes of counting letters in labels,
       * BibTEX considers everything contained inside the braces as a
       * single letter.
       */
      public void execute(BstEntry context) {
        if (stack.size() < 1) {
          throw new VMException("Not enough operands on stack for operation text.length$");
        }
        Object o1 = stack.pop();

        if (!(o1 instanceof String)) {
          throw new VMException("Can only perform operation on a string text.length$");
        }

        String s = (String) o1;
        char[] c = s.toCharArray();
        int result = 0;

        // Comments from bibtex.web:

        // sp_ptr := str_start[pop_lit1];
        int i = 0;

        // sp_end := str_start[pop_lit1+1];
        int n = s.length();

        // sp_brace_level := 0;
        int braceLevel = 0;

        // while (sp_ptr < sp_end) do begin
        while (i < n) {
          // incr(sp_ptr);
          i++;
          // if (str_pool[sp_ptr-1] = left_brace) then
          // begin
          if (c[i - 1] == '{') {
            // incr(sp_brace_level);
            braceLevel++;
            // if ((sp_brace_level = 1) and (sp_ptr < sp_end)) then
            if (braceLevel == 1 && i < n)
              // if (str_pool[sp_ptr] = backslash) then
              // begin
              if (c[i] == '\\') {
                // incr(sp_ptr); {skip over the |backslash|}
                i++; // skip over backslash
                // while ((sp_ptr < sp_end) and (sp_brace_level
                // > 0)) do begin
                while (i < n && braceLevel > 0) {
                  // if (str_pool[sp_ptr] = right_brace) then
                  if (c[i] == '}')
                    // decr(sp_brace_level)
                    braceLevel--;
                  // else if (str_pool[sp_ptr] = left_brace)
                  // then
                  else if (c[i] == '{')

                    // incr(sp_brace_level);
                    braceLevel++;
                  // incr(sp_ptr);
                  i++;
                  // end;
                }
                // incr(num_text_chars);
                result++;
                // end;
              }
            // end
          }
          // else if (str_pool[sp_ptr-1] = right_brace) then
          // begin
          else if (c[i - 1] == '}') {
            // if (sp_brace_level > 0) then
            if (braceLevel > 0)
              // decr(sp_brace_level);
              braceLevel--;
            // end
          }
          // else
          else
            // incr(num_text_chars);
            result++;
        }
        stack.push(new Integer(result));
      }
    });

    /**
     * Pops the top two literals (the integer literal len and a string
     * literal, in that order). It pushes the substring of the (at most) len
     * consecutive text characters starting from the beginning of the
     * string. This function is similar to substring$, but this one
     * considers a \special character", even if it's missing its matching
     * right brace, to be a single text character (rather than however many
     * ASCII characters it actually comprises), and this function doesn't
     * consider braces to be text characters; furthermore, this function
     * appends any needed matching right braces.
     */
    buildInFunctions.put("text.prefix$", new TextPrefixFunction(this));

    buildInFunctions.put("top$", new BstFunction() {
      /**
       * Pops and prints the top of the stack on the terminal and log
       * file. It's useful for debugging.
       */
      public void execute(BstEntry context) {
        System.out.println(stack.pop());
      }
    });

    buildInFunctions.put("type$", new BstFunction() {
      /**
       * Pushes the current entry's type (book, article, etc.), but pushes
       * the null string if the type is either unknown or undefined.
       */
      public void execute(BstEntry context) {
        stack.push(context.entry.getType().getName());
      }
    });

    buildInFunctions.put("warning$", new BstFunction() {
      /**
       * Pops the top (string) literal and prints it following a warning
       * message. This also increments a count of the number of warning
       * messages issued.
       */
      int warning = 1;

      public void execute(BstEntry context) {
        out.println("Warning (#" + (warning++) + "): " + stack.pop());
      }
    });

    buildInFunctions.put("while$", new BstFunction() {
      /**
       * Pops the top two (function) literals, and keeps executing the
       * second as long as the (integer) literal left on the stack by
       * executing the first is greater than 0.
       */
      public void execute(BstEntry context) {
        if (stack.size() < 2) {
          throw new VMException("Not enough operands on stack for operation while$");
        }
        Object f2 = stack.pop();
        Object f1 = stack.pop();

        if (!(f1 instanceof Identifier || f1 instanceof Tree)
          && (f2 instanceof Identifier || f2 instanceof Tree)) {
          throw new VMException("Expecting two functions for while$.");
        }

        do {
          VM.this.executeInContext(f1, context);

          Object i = stack.pop();
          if (!(i instanceof Integer)) {
            throw new VMException(
              "First parameter to while has to return an integer but was " + i);
          }
          if (((Integer) i).intValue() <= 0) {
            break;
          }
          VM.this.executeInContext(f2, context);
        } while (true);
      }
    });

    buildInFunctions.put("width$", new WidthFunction(this));

    buildInFunctions.put("write$", new BstFunction() {
      /**
       * Pops the top (string) literal and writes it on the output buffer
       * (which will result in stuff being written onto the bbl file when
       * the buffer fills up).
       */
      public void execute(BstEntry context) {
        String s = (String) stack.pop();
        System.out.println(s);
        VM.this.bbl.append(s);
      }
    });

  }

  protected boolean assign(BstEntry context, Object o1, Object o2) {

    if (!(o1 instanceof Identifier) || !(o2 instanceof String || o2 instanceof Integer))
      throw new VMException("Invalid parameters");

    String name = ((Identifier) o1).getName();

    if (o2 instanceof String) {

      if (context != null && context.strings.containsKey(name)) {
        context.strings.put(name, (String) o2);
        return true;
      }

      if (strings.containsKey(name)) {
        strings.put(name, (String) o2);
        return true;
      }
      return false;

    }
    if (o2 instanceof Integer) {
      if (context != null && context.integers.containsKey(name)) {
        context.integers.put(name, (Integer) o2);
        return true;
      }

      if (integers.containsKey(name)) {
        integers.put(name, (Integer) o2);
        return true;
      }
      return false;
    }
    return false;
  }

  CommonTree tree;

  private StringBuffer bbl;

  String preamble;

  public String run(BibtexDatabase db) {
    preamble = db.getPreamble();
    return run(db.getEntries());
  }

  public String run(Collection<BibtexEntry> bibtex) {

    reset();

    { // Create entries
      entries = new Vector<BstEntry>(bibtex.size());
      ListIterator<BstEntry> i = entries.listIterator();
      for (BibtexEntry entry : bibtex){
        i.add(new BstEntry(entry));
      }
    }

    // assert tree.getType() == Bst.COMMANDS;

    // Go
    for (int i = 0; i < tree.getChildCount(); i++) {
      Tree child = tree.getChild(i);
      switch (child.getType()) {
      case BstParser.STRINGS:
        strings(child);
        break;
      case BstParser.INTEGERS:
        integers(child);
        break;
      case BstParser.FUNCTION:
        function(child);
        break;
      case BstParser.EXECUTE:
        execute(child);
        break;
      case BstParser.SORT:
        sort(child);
        break;
      case BstParser.ITERATE:
        iterate(child);
        break;
      case BstParser.REVERSE:
        reverse(child);
        break;
      case BstParser.ENTRY:
        entry(child);
        break;
      case BstParser.READ:
        read();
        break;
      case BstParser.MACRO:
        macro(child);
        break;
      }
    }

    return bbl.toString();
  }

  private void reset() {
    bbl = new StringBuffer();

    entries = null;

    strings = new HashMap<String, String>();

    integers = new HashMap<String, Integer>();
    integers.put("entry.max$", new Integer(Integer.MAX_VALUE));
    integers.put("global.max$", new Integer(Integer.MAX_VALUE));

    functions = new HashMap<String, BstFunction>();
    functions.putAll(buildInFunctions);

    stack = new Stack<Object>();
  }

  /**
   * Dredges up from the database file the field values for each entry in the
   * list. It has no arguments. If a database entry doesn't have a value for a
   * field (and probably no database entry will have a value for every field),
   * that field variable is marked as missing for the entry.
   *
   * We use null for the missing entry designator.
   *
   * @param child
   */
  private void read() {

    Iterator<BstEntry> i = entries.iterator();
    while (i.hasNext()) {
      BstEntry e = i.next();

      for (Map.Entry<String, String> mEntry : e.fields.entrySet()){
        Object fieldValue = e.entry.getField(mEntry.getKey());

        mEntry.setValue((fieldValue == null ? null : fieldValue.toString()));
      }
    }

    i = entries.iterator();
    while (i.hasNext()) {
      BstEntry e = i.next();
      if (!e.fields.containsKey("crossref")) {
        e.fields.put("crossref", null);
      }
    }
  }

  /**
   * Defines a string macro. It has two arguments; the first is the macro's
   * name, which is treated like any other variable or function name, and the
   * second is its definition, which must be double-quote-delimited. You must
   * have one for each three-letter month abbreviation; in addition, you
   * should have one for common journal names. The user's database may
   * override any definition you define using this command. If you want to
   * define a string the user can't touch, use the FUNCTION command, which has
   * a compatible syntax.
   *
   * @param child
   */
  private void macro(Tree child) {
    String name = child.getChild(0).getText();
    String replacement = child.getChild(1).getText();
    functions.put(name, new MacroFunction(replacement));
  }

  public class MacroFunction implements BstFunction {

    String replacement;

    public MacroFunction(String replacement) {
      this.replacement = replacement;
    }

    public void execute(BstEntry context) {
      VM.this.push(replacement);
    }
  }

  /*
   * Declares the fields and entry variables. It has three arguments, each a
   * (possibly empty) list of variable names. The three lists are of: fields,
   * integer entry variables, and string entry variables. There is an
   * additional field that BibTEX automatically declares, crossref, used for
   * cross ref- erencing. And there is an additional string entry variable
   * automatically declared, sort.key$, used by the SORT command. Each of
   * these variables has a value for each entry on the list.
   */
  private void entry(Tree child) {

    { // Fields first
      Tree t = child.getChild(0);
      // assert t.getType() == Bst.IDLIST;

      for (int i = 0; i < t.getChildCount(); i++) {
        String name = t.getChild(i).getText();

        for (BstEntry entry : entries){
          entry.fields.put(name, null);
        }
      }
    }
    { // Integers
      Tree t = child.getChild(1);
      // assert t.getType() == Bst.IDLIST;

      for (int i = 0; i < t.getChildCount(); i++) {
        String name = t.getChild(i).getText();
       
        for (BstEntry entry : entries){
          entry.integers.put(name, new Integer(0));
        }
      }
    }
    { // Strings
      Tree t = child.getChild(2);
      // assert t.getType() == Bst.IDLIST;

      for (int i = 0; i < t.getChildCount(); i++) {
        String name = t.getChild(i).getText();
        for (BstEntry entry : entries){
          entry.strings.put(name, null);
        }
      }
      for (BstEntry entry : entries){
        entry.strings.put("sort.key$", null);
      }
    }
  }

  private void reverse(Tree child) {

    BstFunction f = functions.get(child.getChild(0).getText());

    ListIterator<BstEntry> i = entries.listIterator(entries.size());
    while (i.hasPrevious()) {
      f.execute(i.previous());
    }
  }

  private void iterate(Tree child) {
    BstFunction f = functions.get(child.getChild(0).getText());

    Iterator<BstEntry> i = entries.iterator();
    while (i.hasNext()) {
      f.execute(i.next());
    }
  }

  /**
   * Sorts the entry list using the values of the string entry variable
   * sort.key$. It has no arguments.
   *
   * @param child
   */
  private void sort(Tree child) {
    Collections.sort(entries, new Comparator<BstEntry>() {
      public int compare(BstEntry o1, BstEntry o2) {
        return (o1.strings.get("sort.key$")).compareTo(o2.strings
          .get("sort.key$"));
      }
    });
  }

  public void executeInContext(Object o, BstEntry context) {
    if (o instanceof Tree) {
      Tree t = (Tree) o;
      new StackFunction(t).execute(context);
    } else if (o instanceof Identifier) {
      execute(((Identifier) o).getName(), context);
    }
  }

  public void execute(Tree child) {
    execute(child.getChild(0).getText(), null);
  }

  public class StackFunction implements BstFunction {

    Tree tree;

    public Tree getTree() {
      return tree;
    }

    public StackFunction(Tree stack) {
      // assert stack.getType() == Bst.STACK;
      tree = stack;
    }

    public void execute(BstEntry context) {

      for (int i = 0; i < tree.getChildCount(); i++) {

        Tree c = tree.getChild(i);
        try {

          switch (c.getType()) {
          case BstParser.STRING: {
            String s = c.getText();
            push(s.substring(1, s.length() - 1));
          }
            break;
          case BstParser.INTEGER:
            push(new Integer(Integer.parseInt(c.getText().substring(1))));
            break;
          case BstParser.QUOTED:
            push(new Identifier(c.getText().substring(1)));
            break;
          case BstParser.STACK:
            push(c);
            break;
          default:
            VM.this.execute(c.getText(), context);
          }
        } catch (VMException e) {
          if (file != null) {
            System.err.println("ERROR " + e.getMessage() + " (" + file.getPath() + ":"
              + c.getLine() + ")");
          } else {
            System.err.println("ERROR " + e.getMessage() + " (" + c.getLine() + ")");
          }
          throw e;
        }
      }

    }
  }

  private void push(Tree t) {
    stack.push(t);
  }

  public void execute(String name, BstEntry context) {

    if (context != null) {

      if (context.fields.containsKey(name)) {
        stack.push(context.fields.get(name));
        return;
      }
      if (context.strings.containsKey(name)) {
        stack.push(context.strings.get(name));
        return;
      }
      if (context.integers.containsKey(name)) {
        stack.push(context.integers.get(name));
        return;
      }
    }
    if (strings.containsKey(name)) {
      stack.push(strings.get(name));
      return;
    }
    if (integers.containsKey(name)) {
      stack.push(integers.get(name));
      return;
    }

    if (functions.containsKey(name)) {
      functions.get(name).execute(context);
      return;
    }

    throw new VMException("No matching identifier found: " + name);
  }

  private void function(Tree child) {
    String name = child.getChild(0).getText();
    Tree stack = child.getChild(1);
    functions.put(name, new StackFunction(stack));

  }

  /**
   * Declares global integer variables. It has one argument, a list of
   * variable names. There are two such automatically-declared variables,
   * entry.max$ and global.max$, used for limiting the lengths of string vari-
   * ables. You may have any number of these commands, but a variable's
   * declaration must precede its use.
   *
   * @param child
   */
  private void integers(Tree child) {
    Tree t = child.getChild(0);
    // assert t.getType() == Bst.IDLIST;

    for (int i = 0; i < t.getChildCount(); i++) {
      String name = t.getChild(i).getText();
      integers.put(name, new Integer(0));
    }
  }

  /**
   * Declares global string variables. It has one argument, a list of variable
   * names. You may have any number of these commands, but a variable's
   * declaration must precede its use.
   *
   * @param child
   */
  private void strings(Tree child) {
    Tree t = child.getChild(0);
    // assert t.getType() == Bst.IDLIST;

    for (int i = 0; i < t.getChildCount(); i++) {
      String name = t.getChild(i).getText();
      strings.put(name, null);
    }
  }

  public class BstEntry {

    public BstEntry(BibtexEntry e) {
      this.entry = e;
    }

    BibtexEntry entry;

    Map<String, String> strings = new HashMap<String, String>();

    Map<String, String> fields = new HashMap<String, String>();

    Map<String, Integer> integers = new HashMap<String, Integer>();

    public Map<String, String> getFields() {
      return fields;
    }

    public BibtexEntry getBibtexEntry() {
      return entry;
    }
  }

  Vector<BstEntry> entries;
 
  Map<String, String> strings = new HashMap<String, String>();
 
  Map<String, Integer> integers = new HashMap<String, Integer>();
 
  Map<String, BstFunction> functions = new HashMap<String, BstFunction>();
 
  Stack<Object> stack = new Stack<Object>();
 
  public void push(Integer integer) {
    stack.push(integer);
  }

  public void push(String string) {
    stack.push(string);
  }

  public void push(Identifier identifier) {
    stack.push(identifier);
  }

 
    public Map<String, String> getStrings() { return strings; }
   
    public Map<String, Integer> getIntegers() { return integers; }
   
    public Vector<BstEntry> getEntries() { return entries; }
   
   public Map<String, BstFunction> getFunctions() { return functions; }

  public Stack<Object> getStack() {
    return stack;
  }

  public void warn(String string) {
    System.out.println(string);
  }

}
TOP

Related Classes of net.sf.jabref.bst.VM$StackFunction

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.