Package solver.constraints.extension.nary

Source Code of solver.constraints.extension.nary.PropLargeGAC2001

/**
*  Copyright (c) 1999-2014, Ecole des Mines de Nantes
*  All rights reserved.
*  Redistribution and use in source and binary forms, with or without
*  modification, are permitted provided that the following conditions are met:
*
*      * Redistributions of source code must retain the above copyright
*        notice, this list of conditions and the following disclaimer.
*      * Redistributions in binary form must reproduce the above copyright
*        notice, this list of conditions and the following disclaimer in the
*        documentation and/or other materials provided with the distribution.
*      * Neither the name of the Ecole des Mines de Nantes nor the
*        names of its contributors may be used to endorse or promote products
*        derived from this software without specific prior written permission.
*
*  THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND ANY
*  EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
*  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
*  DISCLAIMED. IN NO EVENT SHALL THE REGENTS AND CONTRIBUTORS BE LIABLE FOR ANY
*  DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
*  (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
*  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
*  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
*  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
*  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package solver.constraints.extension.nary;

import gnu.trove.map.hash.THashMap;
import memory.IEnvironment;
import memory.IStateInt;
import solver.Solver;
import solver.constraints.extension.Tuples;
import solver.exception.ContradictionException;
import solver.exception.SolverException;
import solver.variables.IntVar;
import solver.variables.Variable;
import solver.variables.events.PropagatorEventType;

/**
* <br/>
*
* @author Charles Prud'homme, Hadrien Cambazard
* @since 24/04/2014
*/
public class PropLargeGAC2001 extends PropLargeCSP<LargeRelation> {

    // Last valid supports Last(x_i, val) = supports( (blocks(i) + val) * size )

    protected IStateInt[] supports;

    protected int[] blocks;

    // Cardinality
    protected int size;

    // offsets(i) = Min(x_i)
    protected int[] offsets;

    // check if none of the tuple is trivially outside
    //the domains and if yes use a fast valid check
    //by avoiding checking the bounds
    protected ValidityChecker valcheck;

    private PropLargeGAC2001(IntVar[] vs, LargeRelation relation) {
        super(vs, relation);
        this.size = vs.length;
        this.blocks = new int[size];
        this.offsets = new int[size];

        int nbElt = 0;
        boolean allboolean = true;
        for (int i = 0; i < size; i++) {
            offsets[i] = vs[i].getLB();
            blocks[i] = nbElt;
            if ((vars[i].getTypeAndKind() & Variable.KIND) != Variable.BOOL) allboolean = false;
            if (!vars[i].hasEnumeratedDomain()) {
                throw new SolverException("GAC2001 can not be used with bound variables");
            } else nbElt += vars[i].getUB() - vars[i].getLB() + 1;
        }
        this.supports = new IStateInt[nbElt * size];
        IEnvironment env = vs[0].getSolver().getEnvironment();
        for (int i = 0; i < supports.length; i++) {
            supports[i] = env.makeInt(Integer.MIN_VALUE);
        }
        if (allboolean)
            valcheck = new FastBooleanValidityChecker(size, vars);
        else
            valcheck = new FastValidityChecker(size, vars);

    }

    public PropLargeGAC2001(IntVar[] vs, Tuples tuples) {
        this(vs, makeRelation(tuples, vs));
    }

    private static LargeRelation makeRelation(Tuples tuples, IntVar[] vars) {
        long totalSize = 1;
        for (int i = 0; i < vars.length && totalSize > 0; i++) { // to prevent from long overflow
            totalSize *= vars[i].getDomainSize();
        }
        if (totalSize < 0) {
            throw new SolverException("Tuples required too much memory ...");
        }
        if (totalSize / 8 > 50 * 1024 * 1024) {
            return new TuplesLargeTable(tuples, vars);
        }
        return new TuplesTable(tuples, vars);
    }

    @Override
    public void propagate(int evtmask) throws ContradictionException {
        if (PropagatorEventType.isFullPropagation(evtmask)) {
            for (int i = 0; i < vars.length; i++) {
                reviseVar(i, true);
            }
        }
        for (int i = 0; i < size; i++)
            reviseVar(i, false);
    }

    @Override
    public void propagate(int idxVarInProp, int mask) throws ContradictionException {
        filter(idxVarInProp);
    }

    ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
    ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
    ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

    // updates the support for all values in the domain of variable
    // and remove unsupported values for variable
    public void reviseVar(int indexVar, boolean fromScratch) throws ContradictionException {
        int[] currentSupport;
        int left = Integer.MIN_VALUE;
        int right = left;
        int val;
        for (val = vars[indexVar].getLB(); val <= vars[indexVar].getUB(); val = vars[indexVar].nextValue(val)) {
            currentSupport = seekNextSupport(indexVar, val, fromScratch);
            if (currentSupport != null) {
                setSupport(indexVar, val, currentSupport);
            } else {
                if (val == right + 1) {
                    right = val;
                } else {
                    vars[indexVar].removeInterval(left, right, this);
                    left = right = val;
                }
                //                vars[indexVar].removeVal(val, this, false);
            }
        }
        vars[indexVar].removeInterval(left, right, this);
    }


    // Store Last(x_i, val) = support
    public void setSupport(int indexVar, int value, int[] support) {
        for (int i = 0; i < vars.length; i++) {
            supports[(blocks[indexVar] + value - offsets[indexVar]) * size + i].set(support[i]);
        }
    }


    // Get Last(x_i, val)
    public int[] getUBport(int indexVar, int value) {
        int[] resultat = new int[size];
        for (int i = 0; i < size; i++) {
            resultat[i] = supports[(blocks[indexVar] + value - offsets[indexVar]) * size + i].get();
        }
        return resultat;
    }

    // Get Last(x_i, val)
    public int[] lastSupport(int indexVar, int value) {
        return getUBport(indexVar, value);
    }

    /**
     * seek a new support for (variable, value), the smallest tuple greater than currentSupport
     * the search is made through valid tuples until and allowed one is found.
     */
    public int[] seekNextSupport(int indexVar, int val, boolean fromscratch) {
        int[] currentSupport = new int[size];
        int k = 0;
        if (fromscratch) {
            for (int i = 0; i < size; i++) {
                if (i != indexVar)
                    currentSupport[i] = vars[i].getLB();
                else currentSupport[i] = val;
            }
            if (relation.isConsistent(currentSupport)) {
                return currentSupport;
            }
        } else {
            currentSupport = getUBport(indexVar, val);
            if (valcheck.isValid(currentSupport)) {
                return currentSupport;
            } else {
                currentSupport = getFirstValidTupleFrom(currentSupport, indexVar);
                if (currentSupport == null) return null;
                if (relation.isConsistent(currentSupport))
                    return currentSupport;
            }
        }

        while (k < vars.length) {
            if (k == indexVar) k++;
            if (k < vars.length) {
                if (vars[k].nextValue(currentSupport[k]) == Integer.MAX_VALUE) {
                    currentSupport[k] = vars[k].getLB();
                    k++;
                } else {
                    currentSupport[k] = vars[k].nextValue(currentSupport[k]);
                    if ((relation.isConsistent(currentSupport))) {
                        return currentSupport;
                    }
                    k = 0;
                }
            }
        }

        return null;
    }


    /**
     * t is a consistent tuple not valid anymore, we need to go to the first valid tuple
     * greater than t before searching among the valid tuples
     */
    public int[] getFirstValidTupleFrom(int[] t, int indexVar) {
        int k = 0;
        while (k < vars.length) {
            if (k == indexVar) k++;
            if (k < vars.length) {
                if (vars[k].nextValue(t[k]) == Integer.MAX_VALUE) {
                    t[k] = vars[k].getLB();
                    k++;
                } else {
                    t[k] = vars[k].nextValue(t[k]);
                    if (valcheck.isValid(t)) {
                        return t;
                    }
                    k = 0;
                }
            }
        }
        return null;
    }


    public void filter(int idx) throws ContradictionException {
        //sort variables regarding domain sizes to speedup the check !
        valcheck.sortvars();
        if (vars[idx].hasEnumeratedDomain()) {
            for (int i = 0; i < size; i++)
                if (idx != valcheck.position[i])
                    reviseVar(valcheck.position[i], false);
        } else {
            for (int i = 0; i < size; i++)
                reviseVar(valcheck.position[i], false);
        }
    }

    @Override
    public void duplicate(Solver solver, THashMap<Object, Object> identitymap) {
        if (!identitymap.containsKey(this)) {
            int size = this.vars.length;
            IntVar[] aVars = new IntVar[size];
            for (int i = 0; i < size; i++) {
                this.vars[i].duplicate(solver, identitymap);
                aVars[i] = (IntVar) identitymap.get(this.vars[i]);
            }
            identitymap.put(this, new PropLargeGAC2001(aVars, relation.duplicate()));
        }
    }
}
TOP

Related Classes of solver.constraints.extension.nary.PropLargeGAC2001

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.