Package com.sun.tools.javac.comp

Source Code of com.sun.tools.javac.comp.ConstFold

/*
* @(#)ConstFold.java  1.31 07/03/21
*
* Copyright (c) 2007 Sun Microsystems, Inc.  All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.  Sun designates this
* particular file as subject to the "Classpath" exception as provided
* by Sun in the LICENSE file that accompanied this code.
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/

package com.sun.tools.javac.comp;

import com.sun.tools.javac.code.*;
import com.sun.tools.javac.jvm.*;
import com.sun.tools.javac.util.*;

import com.sun.tools.javac.code.Type.*;

import static com.sun.tools.javac.code.TypeTags.*;
import static com.sun.tools.javac.jvm.ByteCodes.*;

/** Helper class for constant folding, used by the attribution phase.
*  This class is marked strictfp as mandated by JLS 15.4.
*
<p><b>This is NOT part of any API supported by Sun Microsystems.  If
*  you write code that depends on this, you do so at your own risk.
*  This code and its internal interfaces are subject to change or
*  deletion without notice.</b>
*/
@Version("@(#)ConstFold.java  1.31 07/03/21")
strictfp class ConstFold {
    protected static final Context.Key<ConstFold> constFoldKey =
  new Context.Key<ConstFold>();

    private Symtab syms;

    public static ConstFold instance(Context context) {
    ConstFold instance = context.get(constFoldKey);
    if (instance == null)
      instance = new ConstFold(context);
    return instance;
    }

    private ConstFold(Context context) {
    context.put(constFoldKey, this);

    syms = Symtab.instance(context);
    }

    static Integer minusOne = -1;
    static Integer zero     = 0;
    static Integer one      = 1;

   /** Convert boolean to integer (true = 1, false = 0).
    */
    private static Integer b2i(boolean b) {
        return b ? one : zero;
    }
    private static int intValue(Object x) { return ((Number)x).intValue(); }
    private static long longValue(Object x) { return ((Number)x).longValue(); }
    private static float floatValue(Object x) { return ((Number)x).floatValue(); }
    private static double doubleValue(Object x) { return ((Number)x).doubleValue(); }

    /** Fold binary or unary operation, returning constant type reflecting the
     *  operations result. Return null if fold failed due to an
     *  arithmetic exception.
     *  @param opcode    The operation's opcode instruction (usually a byte code),
     *                   as entered by class Symtab.
     *  @param argtypes  The operation's argument types (a list of length 1 or 2).
     *                   Argument types are assumed to have non-null constValue's.
     */
    Type fold(int opcode, List<Type> argtypes) {
    int argCount = argtypes.length();
    if (argCount == 1)
      return fold1(opcode, argtypes.head);
    else if (argCount == 2)
      return fold2(opcode, argtypes.head, argtypes.tail.head);
    else
      throw new AssertionError();
    }

    /** Fold unary operation.
     *  @param opcode    The operation's opcode instruction (usually a byte code),
     *                   as entered by class Symtab.
     *                   opcode's ifeq to ifge are for postprocessing
     *                   xcmp; ifxx pairs of instructions.
     *  @param operand   The operation's operand type.
     *                   Argument types are assumed to have non-null constValue's.
     */
    Type fold1(int opcode, Type operand) {
  try {
      Object od = operand.constValue();
      switch (opcode) {
      case nop:
    return operand;
      case ineg: // unary -
    return syms.intType.constType(-intValue(od));
      case ixor: // ~
    return syms.intType.constType(~intValue(od));
      case bool_not: // !
    return syms.booleanType.constType(b2i(intValue(od) == 0));
      case ifeq:
    return syms.booleanType.constType(b2i(intValue(od) == 0));
      case ifne:
    return syms.booleanType.constType(b2i(intValue(od) != 0));
      case iflt:
    return syms.booleanType.constType(b2i(intValue(od) < 0));
      case ifgt:
    return syms.booleanType.constType(b2i(intValue(od) > 0));
      case ifle:
    return syms.booleanType.constType(b2i(intValue(od) <= 0));
      case ifge:
    return syms.booleanType.constType(b2i(intValue(od) >= 0));

      case lneg: // unary -
    return syms.longType.constType(new Long(-longValue(od)));
      case lxor: // ~
    return syms.longType.constType(new Long(~longValue(od)));

      case fneg: // unary -
    return syms.floatType.constType(new Float(-floatValue(od)));

      case dneg: // ~
    return syms.doubleType.constType(new Double(-doubleValue(od)));

      default:
    return null;
      }
  } catch (ArithmeticException e) {
      return null;
  }
    }

    /** Fold binary operation.
     *  @param opcode    The operation's opcode instruction (usually a byte code),
     *                   as entered by class Symtab.
     *                   opcode's ifeq to ifge are for postprocessing
     *                   xcmp; ifxx pairs of instructions.
     *  @param left      The type of the operation's left operand.
     *  @param right     The type of the operation's right operand.
     */
    Type fold2(int opcode, Type left, Type right) {
  try {
      if (opcode > ByteCodes.preMask) {
    // we are seeing a composite instruction of the form xcmp; ifxx.
    // In this case fold both instructions separately.
    Type t1 = fold2(opcode >> ByteCodes.preShift, left, right);
    return (t1.constValue() == null) ? t1
        : fold1(opcode & ByteCodes.preMask, t1);
      } else {
    Object l = left.constValue();
    Object r = right.constValue();
    switch (opcode) {
    case iadd:
        return syms.intType.constType(intValue(l) + intValue(r));
    case isub:
        return syms.intType.constType(intValue(l) - intValue(r));
    case imul:
        return syms.intType.constType(intValue(l) * intValue(r));
    case idiv:
        return syms.intType.constType(intValue(l) / intValue(r));
    case imod:
        return syms.intType.constType(intValue(l) % intValue(r));
    case iand:
        return (left.tag == BOOLEAN
          ? syms.booleanType : syms.intType)
          .constType(intValue(l) & intValue(r));
    case bool_and:
        return syms.booleanType.constType(b2i((intValue(l) & intValue(r)) != 0));
    case ior:
        return (left.tag == BOOLEAN
          ? syms.booleanType : syms.intType)
          .constType(intValue(l) | intValue(r));
    case bool_or:
        return syms.booleanType.constType(b2i((intValue(l) | intValue(r)) != 0));
    case ixor:
        return (left.tag == BOOLEAN
          ? syms.booleanType : syms.intType)
          .constType(intValue(l) ^ intValue(r));
    case ishl: case ishll:
        return syms.intType.constType(intValue(l) << intValue(r));
    case ishr: case ishrl:
        return syms.intType.constType(intValue(l) >> intValue(r));
    case iushr: case iushrl:
        return syms.intType.constType(intValue(l) >>> intValue(r));
    case if_icmpeq:
        return syms.booleanType.constType(
      b2i(intValue(l) == intValue(r)));
    case if_icmpne:
        return syms.booleanType.constType(
      b2i(intValue(l) != intValue(r)));
    case if_icmplt:
        return syms.booleanType.constType(
      b2i(intValue(l) < intValue(r)));
    case if_icmpgt:
        return syms.booleanType.constType(
      b2i(intValue(l) > intValue(r)));
    case if_icmple:
        return syms.booleanType.constType(
      b2i(intValue(l) <= intValue(r)));
    case if_icmpge:
        return syms.booleanType.constType(
      b2i(intValue(l) >= intValue(r)));

    case ladd:
        return syms.longType.constType(
      new Long(longValue(l) + longValue(r)));
    case lsub:
        return syms.longType.constType(
      new Long(longValue(l) - longValue(r)));
    case lmul:
        return syms.longType.constType(
      new Long(longValue(l) * longValue(r)));
    case ldiv:
        return syms.longType.constType(
      new Long(longValue(l) / longValue(r)));
    case lmod:
        return syms.longType.constType(
      new Long(longValue(l) % longValue(r)));
    case land:
        return syms.longType.constType(
      new Long(longValue(l) & longValue(r)));
    case lor:
        return syms.longType.constType(
      new Long(longValue(l) | longValue(r)));
    case lxor:
        return syms.longType.constType(
      new Long(longValue(l) ^ longValue(r)));
    case lshl: case lshll:
        return syms.longType.constType(
      new Long(longValue(l) << intValue(r)));
    case lshr: case lshrl:
        return syms.longType.constType(
      new Long(longValue(l) >> intValue(r)));
    case lushr:
        return syms.longType.constType(
      new Long(longValue(l) >>> intValue(r)));
    case lcmp:
        if (longValue(l) < longValue(r))
      return syms.intType.constType(minusOne);
        else if (longValue(l) > longValue(r))
      return syms.intType.constType(one);
        else
      return syms.intType.constType(zero);
    case fadd:
        return syms.floatType.constType(
      new Float(floatValue(l) + floatValue(r)));
    case fsub:
        return syms.floatType.constType(
      new Float(floatValue(l) - floatValue(r)));
    case fmul:
        return syms.floatType.constType(
      new Float(floatValue(l) * floatValue(r)));
    case fdiv:
        return syms.floatType.constType(
      new Float(floatValue(l) / floatValue(r)));
    case fmod:
        return syms.floatType.constType(
      new Float(floatValue(l) % floatValue(r)));
    case fcmpg: case fcmpl:
        if (floatValue(l) < floatValue(r))
      return syms.intType.constType(minusOne);
        else if (floatValue(l) > floatValue(r))
      return syms.intType.constType(one);
        else if (floatValue(l) == floatValue(r))
      return syms.intType.constType(zero);
        else if (opcode == fcmpg)
      return syms.intType.constType(one);
        else
      return syms.intType.constType(minusOne);
    case dadd:
        return syms.doubleType.constType(
      new Double(doubleValue(l) + doubleValue(r)));
    case dsub:
        return syms.doubleType.constType(
      new Double(doubleValue(l) - doubleValue(r)));
    case dmul:
        return syms.doubleType.constType(
      new Double(doubleValue(l) * doubleValue(r)));
    case ddiv:
        return syms.doubleType.constType(
      new Double(doubleValue(l) / doubleValue(r)));
    case dmod:
        return syms.doubleType.constType(
      new Double(doubleValue(l) % doubleValue(r)));
    case dcmpg: case dcmpl:
        if (doubleValue(l) < doubleValue(r))
      return syms.intType.constType(minusOne);
        else if (doubleValue(l) > doubleValue(r))
      return syms.intType.constType(one);
        else if (doubleValue(l) == doubleValue(r))
      return syms.intType.constType(zero);
        else if (opcode == dcmpg)
      return syms.intType.constType(one);
        else
      return syms.intType.constType(minusOne);
    case if_acmpeq:
        return syms.booleanType.constType(b2i(l.equals(r)));
    case if_acmpne:
        return syms.booleanType.constType(b2i(!l.equals(r)));
    case string_add:
        return syms.stringType.constType(
      left.stringValue() + right.stringValue());
    default:
        return null;
    }
      }
        } catch (ArithmeticException e) {
      return null;
  }
    }

    /** Coerce constant type to target type.
     *  @param etype      The source type of the coercion,
     *                    which is assumed to be a constant type compatble with
     *                    ttype.
     *  @param ttype      The target type of the coercion.
     */
     Type coerce(Type etype, Type ttype) {
   // WAS if (etype.baseType() == ttype.baseType())
   if (etype.tsym.type == ttype.tsym.type)
       return etype;
   if (etype.tag <= DOUBLE) {
       Object n = etype.constValue();
       switch (ttype.tag) {
       case BYTE:
     return syms.byteType.constType(0 + (byte)intValue(n));
       case CHAR:
     return syms.charType.constType(0 + (char)intValue(n));
       case SHORT:
     return syms.shortType.constType(0 + (short)intValue(n));
       case INT:
     return syms.intType.constType(intValue(n));
       case LONG:
     return syms.longType.constType(longValue(n));
       case FLOAT:
     return syms.floatType.constType(floatValue(n));
       case DOUBLE:
     return syms.doubleType.constType(doubleValue(n));
       }
   }
   return ttype;
     }
}





TOP

Related Classes of com.sun.tools.javac.comp.ConstFold

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.