Package org.apache.commons.math3.ml.neuralnet.sofm

Source Code of org.apache.commons.math3.ml.neuralnet.sofm.KohonenUpdateAction

/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements.  See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License.  You may obtain a copy of the License at
*
*      http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.commons.math3.ml.neuralnet.sofm;

import java.util.Collection;
import java.util.HashSet;
import java.util.concurrent.atomic.AtomicLong;
import org.apache.commons.math3.ml.neuralnet.Network;
import org.apache.commons.math3.ml.neuralnet.MapUtils;
import org.apache.commons.math3.ml.neuralnet.Neuron;
import org.apache.commons.math3.ml.neuralnet.UpdateAction;
import org.apache.commons.math3.ml.distance.DistanceMeasure;
import org.apache.commons.math3.linear.ArrayRealVector;
import org.apache.commons.math3.analysis.function.Gaussian;

/**
* Update formula for <a href="http://en.wikipedia.org/wiki/Kohonen">
* Kohonen's Self-Organizing Map</a>.
* <br/>
* The {@link #update(Network,double[]) update} method modifies the
* features {@code w} of the "winning" neuron and its neighbours
* according to the following rule:
* <code>
*  w<sub>new</sub> = w<sub>old</sub> + &alpha; e<sup>(-d / &sigma;)</sup> * (sample - w<sub>old</sub>)
* </code>
* where
* <ul>
<li>&alpha; is the current <em>learning rate</em>, </li>
<li>&sigma; is the current <em>neighbourhood size</em>, and</li>
<li>{@code d} is the number of links to traverse in order to reach
*   the neuron from the winning neuron.</li>
* </ul>
* <br/>
* This class is thread-safe as long as the arguments passed to the
* {@link #KohonenUpdateAction(DistanceMeasure,LearningFactorFunction,
* NeighbourhoodSizeFunction) constructor} are instances of thread-safe
* classes.
* <br/>
* Each call to the {@link #update(Network,double[]) update} method
* will increment the internal counter used to compute the current
* values for
* <ul>
<li>the <em>learning rate</em>, and</li>
<li>the <em>neighbourhood size</em>.</li>
* </ul>
* Consequently, the function instances that compute those values (passed
* to the constructor of this class) must take into account whether this
* class's instance will be shared by multiple threads, as this will impact
* the training process.
*
* @since 3.3
*/
public class KohonenUpdateAction implements UpdateAction {
    /** Distance function. */
    private final DistanceMeasure distance;
    /** Learning factor update function. */
    private final LearningFactorFunction learningFactor;
    /** Neighbourhood size update function. */
    private final NeighbourhoodSizeFunction neighbourhoodSize;
    /** Number of calls to {@link #update(Network,double[])}. */
    private final AtomicLong numberOfCalls = new AtomicLong(-1);

    /**
     * @param distance Distance function.
     * @param learningFactor Learning factor update function.
     * @param neighbourhoodSize Neighbourhood size update function.
     */
    public KohonenUpdateAction(DistanceMeasure distance,
                               LearningFactorFunction learningFactor,
                               NeighbourhoodSizeFunction neighbourhoodSize) {
        this.distance = distance;
        this.learningFactor = learningFactor;
        this.neighbourhoodSize = neighbourhoodSize;
    }

    /**
     * {@inheritDoc}
     */
    public void update(Network net,
                       double[] features) {
        final long numCalls = numberOfCalls.incrementAndGet();
        final double currentLearning = learningFactor.value(numCalls);
        final Neuron best = findAndUpdateBestNeuron(net,
                                                    features,
                                                    currentLearning);

        final int currentNeighbourhood = neighbourhoodSize.value(numCalls);
        // The farther away the neighbour is from the winning neuron, the
        // smaller the learning rate will become.
        final Gaussian neighbourhoodDecay
            = new Gaussian(currentLearning,
                           0,
                           1d / currentNeighbourhood);

        if (currentNeighbourhood > 0) {
            // Initial set of neurons only contains the winning neuron.
            Collection<Neuron> neighbours = new HashSet<Neuron>();
            neighbours.add(best);
            // Winning neuron must be excluded from the neighbours.
            final HashSet<Neuron> exclude = new HashSet<Neuron>();
            exclude.add(best);

            int radius = 1;
            do {
                // Retrieve immediate neighbours of the current set of neurons.
                neighbours = net.getNeighbours(neighbours, exclude);

                // Update all the neighbours.
                for (Neuron n : neighbours) {
                    updateNeighbouringNeuron(n, features, neighbourhoodDecay.value(radius));
                }

                // Add the neighbours to the exclude list so that they will
                // not be update more than once per training step.
                exclude.addAll(neighbours);
                ++radius;
            } while (radius <= currentNeighbourhood);
        }
    }

    /**
     * Retrieves the number of calls to the {@link #update(Network,double[]) update}
     * method.
     *
     * @return the current number of calls.
     */
    public long getNumberOfCalls() {
        return numberOfCalls.get();
    }

    /**
     * Atomically updates the given neuron.
     *
     * @param n Neuron to be updated.
     * @param features Training data.
     * @param learningRate Learning factor.
     */
    private void updateNeighbouringNeuron(Neuron n,
                                          double[] features,
                                          double learningRate) {
        while (true) {
            final double[] expect = n.getFeatures();
            final double[] update = computeFeatures(expect,
                                                    features,
                                                    learningRate);
            if (n.compareAndSetFeatures(expect, update)) {
                break;
            }
        }
    }

    /**
     * Searches for the neuron whose features are closest to the given
     * sample, and atomically updates its features.
     *
     * @param net Network.
     * @param features Sample data.
     * @param learningRate Current learning factor.
     * @return the winning neuron.
     */
    private Neuron findAndUpdateBestNeuron(Network net,
                                           double[] features,
                                           double learningRate) {
        while (true) {
            final Neuron best = MapUtils.findBest(features, net, distance);

            final double[] expect = best.getFeatures();
            final double[] update = computeFeatures(expect,
                                                    features,
                                                    learningRate);
            if (best.compareAndSetFeatures(expect, update)) {
                return best;
            }

            // If another thread modified the state of the winning neuron,
            // it may not be the best match anymore for the given training
            // sample: Hence, the winner search is performed again.
        }
    }

    /**
     * Computes the new value of the features set.
     *
     * @param current Current values of the features.
     * @param sample Training data.
     * @param learningRate Learning factor.
     * @return the new values for the features.
     */
    private double[] computeFeatures(double[] current,
                                     double[] sample,
                                     double learningRate) {
        final ArrayRealVector c = new ArrayRealVector(current, false);
        final ArrayRealVector s = new ArrayRealVector(sample, false);
        // c + learningRate * (s - c)
        return s.subtract(c).mapMultiplyToSelf(learningRate).add(c).toArray();
    }
}
TOP

Related Classes of org.apache.commons.math3.ml.neuralnet.sofm.KohonenUpdateAction

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.