Package org.apache.commons.math.analysis.solvers

Source Code of org.apache.commons.math.analysis.solvers.MullerSolverTest

/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements.  See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License.  You may obtain a copy of the License at
*
*      http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.analysis.solvers;

import org.apache.commons.math.MathException;
import org.apache.commons.math.analysis.Expm1Function;
import org.apache.commons.math.analysis.QuinticFunction;
import org.apache.commons.math.analysis.SinFunction;
import org.apache.commons.math.analysis.UnivariateRealFunction;

import junit.framework.TestCase;

/**
* Testcase for Muller solver.
* <p>
* Muller's method converges almost quadratically near roots, but it can
* be very slow in regions far away from zeros. Test runs show that for
* reasonably good initial values, for a default absolute accuracy of 1E-6,
* it generally takes 5 to 10 iterations for the solver to converge.
* <p>
* Tests for the exponential function illustrate the situations where
* Muller solver performs poorly.
*
* @version $Revision: 811685 $ $Date: 2009-09-05 13:36:48 -0400 (Sat, 05 Sep 2009) $
*/
public final class MullerSolverTest extends TestCase {

    /**
     * Test deprecated APIs.
     */
    @Deprecated
    public void testDeprecated() throws MathException {
        UnivariateRealFunction f = new SinFunction();
        UnivariateRealSolver solver = new MullerSolver(f);
        double min, max, expected, result, tolerance;

        min = 3.0; max = 4.0; expected = Math.PI;
        tolerance = Math.max(solver.getAbsoluteAccuracy(),
                    Math.abs(expected * solver.getRelativeAccuracy()));
        result = solver.solve(min, max);
        assertEquals(expected, result, tolerance);

        min = -1.0; max = 1.5; expected = 0.0;
        tolerance = Math.max(solver.getAbsoluteAccuracy(),
                    Math.abs(expected * solver.getRelativeAccuracy()));
        result = solver.solve(min, max);
        assertEquals(expected, result, tolerance);
    }

    /**
     * Test deprecated APIs.
     */
    @Deprecated
    public void testDeprecated2() throws MathException {
        UnivariateRealFunction f = new QuinticFunction();
        MullerSolver solver = new MullerSolver(f);
        double min, max, expected, result, tolerance;

        min = -0.4; max = 0.2; expected = 0.0;
        tolerance = Math.max(solver.getAbsoluteAccuracy(),
                    Math.abs(expected * solver.getRelativeAccuracy()));
        result = solver.solve2(min, max);
        assertEquals(expected, result, tolerance);

        min = 0.75; max = 1.5; expected = 1.0;
        tolerance = Math.max(solver.getAbsoluteAccuracy(),
                    Math.abs(expected * solver.getRelativeAccuracy()));
        result = solver.solve2(min, max);
        assertEquals(expected, result, tolerance);

        min = -0.9; max = -0.2; expected = -0.5;
        tolerance = Math.max(solver.getAbsoluteAccuracy(),
                    Math.abs(expected * solver.getRelativeAccuracy()));
        result = solver.solve2(min, max);
        assertEquals(expected, result, tolerance);
    }

    /**
     * Test of solver for the sine function.
     */
    public void testSinFunction() throws MathException {
        UnivariateRealFunction f = new SinFunction();
        UnivariateRealSolver solver = new MullerSolver();
        double min, max, expected, result, tolerance;

        min = 3.0; max = 4.0; expected = Math.PI;
        tolerance = Math.max(solver.getAbsoluteAccuracy(),
                    Math.abs(expected * solver.getRelativeAccuracy()));
        result = solver.solve(f, min, max);
        assertEquals(expected, result, tolerance);

        min = -1.0; max = 1.5; expected = 0.0;
        tolerance = Math.max(solver.getAbsoluteAccuracy(),
                    Math.abs(expected * solver.getRelativeAccuracy()));
        result = solver.solve(f, min, max);
        assertEquals(expected, result, tolerance);
    }

    /**
     * Test of solver for the sine function using solve2().
     */
    public void testSinFunction2() throws MathException {
        UnivariateRealFunction f = new SinFunction();
        MullerSolver solver = new MullerSolver();
        double min, max, expected, result, tolerance;

        min = 3.0; max = 4.0; expected = Math.PI;
        tolerance = Math.max(solver.getAbsoluteAccuracy(),
                    Math.abs(expected * solver.getRelativeAccuracy()));
        result = solver.solve2(f, min, max);
        assertEquals(expected, result, tolerance);

        min = -1.0; max = 1.5; expected = 0.0;
        tolerance = Math.max(solver.getAbsoluteAccuracy(),
                    Math.abs(expected * solver.getRelativeAccuracy()));
        result = solver.solve2(f, min, max);
        assertEquals(expected, result, tolerance);
    }

    /**
     * Test of solver for the quintic function.
     */
    public void testQuinticFunction() throws MathException {
        UnivariateRealFunction f = new QuinticFunction();
        UnivariateRealSolver solver = new MullerSolver();
        double min, max, expected, result, tolerance;

        min = -0.4; max = 0.2; expected = 0.0;
        tolerance = Math.max(solver.getAbsoluteAccuracy(),
                    Math.abs(expected * solver.getRelativeAccuracy()));
        result = solver.solve(f, min, max);
        assertEquals(expected, result, tolerance);

        min = 0.75; max = 1.5; expected = 1.0;
        tolerance = Math.max(solver.getAbsoluteAccuracy(),
                    Math.abs(expected * solver.getRelativeAccuracy()));
        result = solver.solve(f, min, max);
        assertEquals(expected, result, tolerance);

        min = -0.9; max = -0.2; expected = -0.5;
        tolerance = Math.max(solver.getAbsoluteAccuracy(),
                    Math.abs(expected * solver.getRelativeAccuracy()));
        result = solver.solve(f, min, max);
        assertEquals(expected, result, tolerance);
    }

    /**
     * Test of solver for the quintic function using solve2().
     */
    public void testQuinticFunction2() throws MathException {
        UnivariateRealFunction f = new QuinticFunction();
        MullerSolver solver = new MullerSolver();
        double min, max, expected, result, tolerance;

        min = -0.4; max = 0.2; expected = 0.0;
        tolerance = Math.max(solver.getAbsoluteAccuracy(),
                    Math.abs(expected * solver.getRelativeAccuracy()));
        result = solver.solve2(f, min, max);
        assertEquals(expected, result, tolerance);

        min = 0.75; max = 1.5; expected = 1.0;
        tolerance = Math.max(solver.getAbsoluteAccuracy(),
                    Math.abs(expected * solver.getRelativeAccuracy()));
        result = solver.solve2(f, min, max);
        assertEquals(expected, result, tolerance);

        min = -0.9; max = -0.2; expected = -0.5;
        tolerance = Math.max(solver.getAbsoluteAccuracy(),
                    Math.abs(expected * solver.getRelativeAccuracy()));
        result = solver.solve2(f, min, max);
        assertEquals(expected, result, tolerance);
    }

    /**
     * Test of solver for the exponential function.
     * <p>
     * It takes 10 to 15 iterations for the last two tests to converge.
     * In fact, if not for the bisection alternative, the solver would
     * exceed the default maximal iteration of 100.
     */
    public void testExpm1Function() throws MathException {
        UnivariateRealFunction f = new Expm1Function();
        UnivariateRealSolver solver = new MullerSolver();
        double min, max, expected, result, tolerance;

        min = -1.0; max = 2.0; expected = 0.0;
        tolerance = Math.max(solver.getAbsoluteAccuracy(),
                    Math.abs(expected * solver.getRelativeAccuracy()));
        result = solver.solve(f, min, max);
        assertEquals(expected, result, tolerance);

        min = -20.0; max = 10.0; expected = 0.0;
        tolerance = Math.max(solver.getAbsoluteAccuracy(),
                    Math.abs(expected * solver.getRelativeAccuracy()));
        result = solver.solve(f, min, max);
        assertEquals(expected, result, tolerance);

        min = -50.0; max = 100.0; expected = 0.0;
        tolerance = Math.max(solver.getAbsoluteAccuracy(),
                    Math.abs(expected * solver.getRelativeAccuracy()));
        result = solver.solve(f, min, max);
        assertEquals(expected, result, tolerance);
    }

    /**
     * Test of solver for the exponential function using solve2().
     * <p>
     * It takes 25 to 50 iterations for the last two tests to converge.
     */
    public void testExpm1Function2() throws MathException {
        UnivariateRealFunction f = new Expm1Function();
        MullerSolver solver = new MullerSolver();
        double min, max, expected, result, tolerance;

        min = -1.0; max = 2.0; expected = 0.0;
        tolerance = Math.max(solver.getAbsoluteAccuracy(),
                    Math.abs(expected * solver.getRelativeAccuracy()));
        result = solver.solve2(f, min, max);
        assertEquals(expected, result, tolerance);

        min = -20.0; max = 10.0; expected = 0.0;
        tolerance = Math.max(solver.getAbsoluteAccuracy(),
                    Math.abs(expected * solver.getRelativeAccuracy()));
        result = solver.solve2(f, min, max);
        assertEquals(expected, result, tolerance);

        min = -50.0; max = 100.0; expected = 0.0;
        tolerance = Math.max(solver.getAbsoluteAccuracy(),
                    Math.abs(expected * solver.getRelativeAccuracy()));
        result = solver.solve2(f, min, max);
        assertEquals(expected, result, tolerance);
    }

    /**
     * Test of parameters for the solver.
     */
    public void testParameters() throws Exception {
        UnivariateRealFunction f = new SinFunction();
        UnivariateRealSolver solver = new MullerSolver();

        try {
            // bad interval
            solver.solve(f, 1, -1);
            fail("Expecting IllegalArgumentException - bad interval");
        } catch (IllegalArgumentException ex) {
            // expected
        }
        try {
            // no bracketing
            solver.solve(f, 2, 3);
            fail("Expecting IllegalArgumentException - no bracketing");
        } catch (IllegalArgumentException ex) {
            // expected
        }
    }
}
TOP

Related Classes of org.apache.commons.math.analysis.solvers.MullerSolverTest

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.