Package org.apache.commons.math3.random

Source Code of org.apache.commons.math3.random.CorrelatedRandomVectorGenerator

/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements.  See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License.  You may obtain a copy of the License at
*
*      http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.commons.math3.random;

import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.linear.RealMatrix;
import org.apache.commons.math3.linear.RectangularCholeskyDecomposition;

/**
* A {@link RandomVectorGenerator} that generates vectors with with
* correlated components.
* <p>Random vectors with correlated components are built by combining
* the uncorrelated components of another random vector in such a way that
* the resulting correlations are the ones specified by a positive
* definite covariance matrix.</p>
* <p>The main use for correlated random vector generation is for Monte-Carlo
* simulation of physical problems with several variables, for example to
* generate error vectors to be added to a nominal vector. A particularly
* interesting case is when the generated vector should be drawn from a <a
* href="http://en.wikipedia.org/wiki/Multivariate_normal_distribution">
* Multivariate Normal Distribution</a>. The approach using a Cholesky
* decomposition is quite usual in this case. However, it can be extended
* to other cases as long as the underlying random generator provides
* {@link NormalizedRandomGenerator normalized values} like {@link
* GaussianRandomGenerator} or {@link UniformRandomGenerator}.</p>
* <p>Sometimes, the covariance matrix for a given simulation is not
* strictly positive definite. This means that the correlations are
* not all independent from each other. In this case, however, the non
* strictly positive elements found during the Cholesky decomposition
* of the covariance matrix should not be negative either, they
* should be null. Another non-conventional extension handling this case
* is used here. Rather than computing <code>C = U<sup>T</sup>.U</code>
* where <code>C</code> is the covariance matrix and <code>U</code>
* is an upper-triangular matrix, we compute <code>C = B.B<sup>T</sup></code>
* where <code>B</code> is a rectangular matrix having
* more rows than columns. The number of columns of <code>B</code> is
* the rank of the covariance matrix, and it is the dimension of the
* uncorrelated random vector that is needed to compute the component
* of the correlated vector. This class handles this situation
* automatically.</p>
*
* @version $Id: CorrelatedRandomVectorGenerator.java 1416643 2012-12-03 19:37:14Z tn $
* @since 1.2
*/

public class CorrelatedRandomVectorGenerator
    implements RandomVectorGenerator {
    /** Mean vector. */
    private final double[] mean;
    /** Underlying generator. */
    private final NormalizedRandomGenerator generator;
    /** Storage for the normalized vector. */
    private final double[] normalized;
    /** Root of the covariance matrix. */
    private final RealMatrix root;

    /**
     * Builds a correlated random vector generator from its mean
     * vector and covariance matrix.
     *
     * @param mean Expected mean values for all components.
     * @param covariance Covariance matrix.
     * @param small Diagonal elements threshold under which  column are
     * considered to be dependent on previous ones and are discarded
     * @param generator underlying generator for uncorrelated normalized
     * components.
     * @throws org.apache.commons.math3.linear.NonPositiveDefiniteMatrixException
     * if the covariance matrix is not strictly positive definite.
     * @throws DimensionMismatchException if the mean and covariance
     * arrays dimensions do not match.
     */
    public CorrelatedRandomVectorGenerator(double[] mean,
                                           RealMatrix covariance, double small,
                                           NormalizedRandomGenerator generator) {
        int order = covariance.getRowDimension();
        if (mean.length != order) {
            throw new DimensionMismatchException(mean.length, order);
        }
        this.mean = mean.clone();

        final RectangularCholeskyDecomposition decomposition =
            new RectangularCholeskyDecomposition(covariance, small);
        root = decomposition.getRootMatrix();

        this.generator = generator;
        normalized = new double[decomposition.getRank()];

    }

    /**
     * Builds a null mean random correlated vector generator from its
     * covariance matrix.
     *
     * @param covariance Covariance matrix.
     * @param small Diagonal elements threshold under which  column are
     * considered to be dependent on previous ones and are discarded.
     * @param generator Underlying generator for uncorrelated normalized
     * components.
     * @throws org.apache.commons.math3.linear.NonPositiveDefiniteMatrixException
     * if the covariance matrix is not strictly positive definite.
     */
    public CorrelatedRandomVectorGenerator(RealMatrix covariance, double small,
                                           NormalizedRandomGenerator generator) {
        int order = covariance.getRowDimension();
        mean = new double[order];
        for (int i = 0; i < order; ++i) {
            mean[i] = 0;
        }

        final RectangularCholeskyDecomposition decomposition =
            new RectangularCholeskyDecomposition(covariance, small);
        root = decomposition.getRootMatrix();

        this.generator = generator;
        normalized = new double[decomposition.getRank()];

    }

    /** Get the underlying normalized components generator.
     * @return underlying uncorrelated components generator
     */
    public NormalizedRandomGenerator getGenerator() {
        return generator;
    }

    /** Get the rank of the covariance matrix.
     * The rank is the number of independent rows in the covariance
     * matrix, it is also the number of columns of the root matrix.
     * @return rank of the square matrix.
     * @see #getRootMatrix()
     */
    public int getRank() {
        return normalized.length;
    }

    /** Get the root of the covariance matrix.
     * The root is the rectangular matrix <code>B</code> such that
     * the covariance matrix is equal to <code>B.B<sup>T</sup></code>
     * @return root of the square matrix
     * @see #getRank()
     */
    public RealMatrix getRootMatrix() {
        return root;
    }

    /** Generate a correlated random vector.
     * @return a random vector as an array of double. The returned array
     * is created at each call, the caller can do what it wants with it.
     */
    public double[] nextVector() {

        // generate uncorrelated vector
        for (int i = 0; i < normalized.length; ++i) {
            normalized[i] = generator.nextNormalizedDouble();
        }

        // compute correlated vector
        double[] correlated = new double[mean.length];
        for (int i = 0; i < correlated.length; ++i) {
            correlated[i] = mean[i];
            for (int j = 0; j < root.getColumnDimension(); ++j) {
                correlated[i] += root.getEntry(i, j) * normalized[j];
            }
        }

        return correlated;

    }

}
TOP

Related Classes of org.apache.commons.math3.random.CorrelatedRandomVectorGenerator

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.